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Abstract: UAVs and other low-altitude remote sensing platforms are proving very useful 

tools for remote sensing of river systems. Currently consumer grade cameras are still the 

most commonly used sensors for this purpose. In particular, progress is being made to 

obtain river bathymetry from the optical image data collected with such cameras, using the 

strong attenuation of light in water. No studies have yet applied this method to map 

submergence depth of aquatic vegetation, which has rather different reflectance 

characteristics from river bed substrate. This study therefore looked at the possibilities to 

use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow 

clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of 

Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a 

clear water stream. The results showed that for each species the ratio of certain 

wavelengths were strongly associated with depth. A combined assessment of all species 

resulted in equally strong associations, indicating that the effect of spectral variation in 

vegetation is subsidiary to spectral variation due to depth changes. Strongest associations 

(R
2
-values ranging from 0.67 to 0.90 for different species) were found for combinations 

including one band in the near infrared (NIR) region between 825 and 925 nm and one 

band in the visible light region. Currently data of both high spatial and spectral resolution 

is not commonly available to apply the OBRA results directly to image data for SAV depth 
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mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band 

high spatial resolution image composites using a NIR sensitive DSLR camera. A field 

dataset of SAV submergence depths was used to develop regression models for the 

mapping of submergence depth from image pixel values. Band (combinations) providing 

the best performing models (R
2
-values up to 0.77) corresponded with the OBRA findings. 

A 10% error was achieved under sub-optimal data collection conditions, which indicates 

that the method could be suitable for many SAV mapping applications. 

Keywords: submerged aquatic vegetation; macrophytes; fluvial; remote sensing; 

submergence depth; bathymetry; OBRA 

 

1. Introduction 

Increasingly Unmanned Aerial Vehicles (UAVs) and other low-altitude remote sensing platforms 

such as kites and telescopic poles are used to map the spatial distribution of fluvial properties for 

management, monitoring, and modelling of river systems. These low-altitude remote sensing 

approaches overcome issues of spatial and temporal coverage, which particularly affect application of 

conventional air and spaceborne remote sensing to smaller river systems. An important limitation of 

such platforms is their small payload, which means that the most commonly used sensors are consumer 

grade photo cameras with a low spectral resolution and range. This warrants further research to find 

out how this type of sensors can be used to map the spatial distribution of fluvial properties. 

The presence of submerged aquatic vegetation (SAV) can play a dominant role in influencing flow 

conditions in lowland river systems. It affects stream flow heterogeneity, hydraulic resistance, and 

sediment retention [1–3] and is therefore of importance for flood management. Furthermore the 

patchiness of macrophytes creates a heterogeneous environment determining stream ecosystem 

functioning [4]. In some cases it can become invasive by forming extensive canopies, which may 

affect light penetration, navigation, recreation, and fisheries [5]. Submergence depth and extent of 

SAV cover are fluvial properties of interest for the development of models that can give insight in 

these impacts of SAV abundance. Where remote sensing techniques can achieve great detail and 

accuracy for 3D mapping of terrestrial vegetation [6], obtaining bathymetry of SAV at a similar scale 

(<1 m) is much more difficult in aquatic environments. This is largely due to the interaction between 

water and electromagnetic radiation at the wavelengths most suitable for this kind of analysis. A 

number of authors have published overviews of bathymetric mapping methods and their application to  

rivers [7–9]. The two most suitable approaches described by these authors for obtaining high resolution 

information of smaller, shallow river systems, are those using spectral-depth relationships and those 

using photogrammetric methods, including structure from motion (SfM) approaches [10]. The  

spectral-depth relationship approach is currently most commonly used and has been performed using 

multispectral, RGB (true colour), and black and white imagery obtained with standard photo cameras 

(e.g., [7,11–13]).  

The spectral-depth relationship approach makes use of the exponential relationship between  

image-derived reflectance and water depth through regression analysis, as first suggested in [14] and 
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since then commonly applied in marine and fluvial environments. It is based on the principle that 

bottom reflectance measured above the water surface will be reduced due to attenuation of light in 

water. The strength of the reflectance signal is therefore related to depth of the bottom below the water 

surface and can be used to determine bathymetry [8,11,15,16]. The optimal wavelengths for the band 

ratio-based algorithms used in most of these studies, however, have been determined for streams 

without (significant) SAV growth. A problem noted by several authors is the effect of variation in 

bottom substrate and presence of SAV cover on depth estimates [13,17]. Similar issues were found for 

seagrass in shallow coastal environments by [18]. In contrast to non-photosynthetic bottom material, 

vegetation generally has high NIR reflectance like terrestrial vegetation. Due to the strong attenuation 

of light in these wavelengths by water, the optimal wavelength bands for depth estimates of SAV are 

likely to be different compared to bare substrate.  

The aim of the project presented in this paper is to investigate the possibility of creating maps of 

SAV depth distribution in shallow clear water streams from images obtained with a consumer grade 

digital camera using spectral-depth relationships. This is done in two stages: 

Firstly we determine how vegetation spectral signatures, obtained by means of field spectroscopy, 

relate to water depth using the Optimal Band Ratio Analysis (OBRA) method, as developed by [15]. 

With this method it is possible to determine the most suitable wavelength band combinations for depth 

retrieval from high spectral resolution reflectance data.  

Secondly we apply the spectrally based depth retrieval approach to multi-spectral image composites 

obtained with a NIR sensitive consumer grade camera to map SAV depth and extent for 6–8 m long 

reaches of a Belgian clear water stream. The OBRA method was developed for use with data of 

hyperspectral resolution. Although hyperspectral data of decimeter resolution can be obtained, such 

spatial resolution is not sufficient for detailed mapping of SAV depth and extent small rivers, while the 

cost of obtaining such imagery is still very high and logistics are difficult. This means that wavelength 

combinations identified with the OBRA method cannot be used directly to obtain spatial information 

of SAV depth distribution. Instead two to six-band multi-spectral image composites were created using 

a NIR sensitive camera elevated from a telescopic mast. The resulting SAV maps are discussed in the 

light of findings from the OBRA study. 

2. Methods 

2.1. Study Site  

Most of the data for the OBRA analysis were obtained from the River Wylye where it flows through 

the Langford Trust nature reserve in Wiltshire, UK, during two fieldwork periods in August/September 

2009 and 2010. Some additional data for this part of the project came from a distributary of the River 

Frome near Wool in Dorset. Both sites are typical English chalk streams and physically very similar, 

with a stream width of around 5 m, a maximum water depth at time of sampling of around 0.5 m and a 

mean discharge of approximately 0.3 m
3
·s

−1
. The water in the steams has exceptionally low turbidity 

(<10 mg/L during the fieldwork period) and contains an abundant macrophyte cover, with Water 

Crowfoot (Ranunculus fluitans, Lam), Fennel Pondweed (Potamogeton pectinatus, L.), and Spiked 

Water Milfoil (Myriophyllum spicatum, L.) as some of the most common species at the sites used. 
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The data for the vegetation mapping were collected in May 2012 from three locations along the 

Desselse Nete close to its confluence with the Zwarte Nete near the village Retie in Belgium. The 

stream has generally low suspended solid and organic matter concentrations (<50 mg/L). The stream 

width is 6.2 m, with an average water depth of 0.5–0.6 m and mean discharge of 0.35–0.6 m
3
·s

−1
. The 

vegetation on one sample site along this stream consists of mainly dense patches of Water Crowfoot 

(Ranunculus aquatilis, L) and Blunt-fruited Water Starwort (Callitriche obtusangula, Le Gall). The 

plants on two other sample sites are more open and consist of Broad-Leaved Pondweed (Potamogeton 

natans, L.) and European Bur-reed (Sparganium emersum, L.).  

2.2. OBRA: Introduction  

Legleiter et al. [15,19] provide a clear explanation of the theoretical background behind spectrally 

based depth retrieval. They conclude that the commonly used deep-water correction or Lyzenga 

algorithm [14] is unsuitable for shallow river conditions and suggest a modified approach. The 

Lyzenga algorithm requires generally unavailable knowledge of the amount of radiance from optically 

deep water. Instead [15] assume that the amount of radiance from constituents of the water column, 

from surface-reflected radiance and from radiance derived from the atmosphere between sensor and 

fluvial target, are insignificant compared to the amount of radiance coming from the river bottom in 

shallow and relatively clear streams. These radiance sources also further diminish as stream depth 

decreases. Various authors have taken the approach of using the ratio of at sensor radiances LT() in 

two wavelength bands, referred to as X, so that the ratio of the bottom reflectance in these two bands is 

the same for all the bottom types, but still dependent on depth [20,21]. For shallow river conditions 

according to the assumptions by [15] this will correspond with the ratio of bottom reflected radiance 

Lb() in the two bands: 

𝑋 = ln [
𝐿T1
𝐿T2

] ≅ ln [
𝐿b1
𝐿b2

] (1)  

This equates with a simplified version of the Lyzenga algorithm, which forms a dimensionally 

homogeneous, linear relationship between the (image) data-derived variable X and water depth d:  

𝑋 ≅ (𝐾2 − 𝐾1)𝑑 + ln [
(𝑅𝑏1−𝑅𝑐1)

(𝑅𝑏2−𝑅𝑐2)
] + 𝐴] (2)  

With: 

𝐴 = ln [
Ed1C1T1
Ed2C2T2

] (3)  

K() in Equation (2) are the effective attenuation coefficients; Rb() bottom reflectance of the river 

and Rc() volume reflectance of the water column. The slope term (K2 − K1) represents the difference 

in effective attenuation between two bands. X increases with depth if K2 is bigger than K1. The 

intercept incorporates the bottom contrast between the streambed and the water column, as well as 

constant A (Equation (3)), which is determined by downwelling solar irradiance Ed(λ), transmission 

across air–water interface C(λ) and transmittance of the atmosphere T(λ). Apart from water depth d the 

variables in this equation are all assumed constant throughout a river reach (i.e., Both K(λ) and Rc(λ), 

which are determined by the inherent optical properties of the water column; Rb(λ) depends on 
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substrate composition, but Rb1/Rb2 is assumed constant across bottom types and the ratio will therefore 

not vary spatially). Consequently the equation can be used to estimate d on a pixel by pixel basis, 

based on the remotely sensed variable X. Bottom reflected radiances Lb1 and Lb2 are directly derived 

from image data by extracting pixel digital numbers (DN) for two bands, as the difference and ratio 

based calculations of the equation slope and intercept make precise knowledge of absolute radiance 

values unnecessary. 

Based on the above theoretical development [15] propose the OBRA method to determine the 

optimal band ratio that should be used to map bathymetry from passive optical image data. OBRA 

calculates X for each pair of bands (λ1, λ2) and determines its association with d. The resulting 

coefficient of determination R
2
-values are plotted in an n × n matrix (where n equals the number of 

measured wavelength bands). Only the bottom half of the matrix is retained as the results are 

symmetrical on either side of the diagonal. The spread of R
2
-values in the matrix indicates which 

bands yield the strongest relationships with depth and how unique these are. 

Legleiter et al. [15] were the first to investigate the effect of substrate on the selection of optimal 

wavelengths. For river beds with gravel and periphyton substrates they found that the ratio of 

reflectances at 586 and 614 nm were strongly related to depth (R
2
 = 0.945). However, the authors 

commented that the range of suitable wavelengths for depth estimates might be limited in the presence 

of more spectrally distinct substrates. None of their studied sites had an extensive vegetation cover.  

2.3. OBRA: Data Collection 

Our input for OBRA consists of in situ point measurements of submergence depth values and 

reflectance spectra for three macrophyte species Water Crowfoot, Fennel Pondweed, and Spiked Water 

Milfoil, collected with a GER1500 hand-held field spectroradiometer. Figure 1 shows examples of 

reflectance data obtained for Water Crowfoot. Hyperspectral resolution reflectance spectra are shown 

for three different submergence depths (1.5–40 cm). The spectra clearly show how reflectance from 

the macrophyte cover decreases with depth at variable rates depending on wavelength. Due to limited 

access to the river and limited availability of specific vegetation species at different depths purposive 

sampling was applied to obtain submerged vegetation spectra. The GER1500 was held at nadir 50 cm 

above the water surface. The instrument has a 3° field of view so the area measured on the target has a 

2.6–4.0 cm diameter (depending on submergence depth), which is assumed sufficient to obtain 

representative spectral information from the dense vegetation stands. Sampling was carried out on 

cloud-free days within 2 h of solar noon. Spectral averaging of 10–30 spectra per sample was 

performed to ensure optimal signal-to-noise ratio. A white reference Spectralon calibration panel of 

99% reflectance was used every 5 to 10 samples to offset any change in the atmospheric condition and 

irradiance of the sun. Reflectance was calculated by dividing macrophyte radiance by radiance from 

the Spectralon surface.  

Table 1 shows a summary of the sample numbers and depth ranges for each of the SAV species. 

Each sample has a spectral range of 350–1050 nm and a sampling interval of 1.5 nm. Due to the 

relatively shallow water depths in chalk streams not all NIR radiation is absorbed. Suspended load is 

mostly absent from the sampled streams, so no water property adjustments were made. 
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Figure 1. Reflectance spectra of Water Crowfoot at 1.5, 16, and 40 cm below the  

water surface and the absorption coefficients of water (cm
−1

) for wavelengths between  

400 and 1000 nm. 

Table 1. Submergence depth range and number of spectral samples taken from different 

macrophyte species. 

SAV Species N Depth Range (cm) 

Fennel Pondweed 60 10–25 

Water Crowfoot 37 2–40 

Water Milfoil 66 3–50 

2.4. Depth Mapping: Image Data Collection and Preprocessing 

To create vegetation submergence depth maps image data was collected from three locations along 

the Desselse Nete. One location was photographed on two different days; they will be referred to as 

site 1a and site 1b. The image data was obtained using a Fujifilm IS-Pro NIR sensitive DSLR camera 

with a Tamron AF Aspherical 28–80 mm f/3.5–5.6 lens attached to a pole and positioned 

approximately 4.5 m at nadir over the centre line of the river. The pole was secured on the river bank 

and held in position by guy ropes. Photos were taken with a radio controlled remote shutter in  

3024 × 2016 pixels, 8-bit, GEOTIFF format. Although TIFF format is not thought to be most  

suitable [22] it was used in this case because of ease of use (format and file size). Multi-spectral image 

composites were created by taking a series of four photos from the same location, using different 

filters. Each filter transmits a specific part of the electromagnetic spectrum resulting in a distinct broad 

spectral band for the image composite. Red, Green, and Blue image bands were obtained by covering 

the camera lens with a NIR blocking filter and using the camera RGB channels. A visible light (VIS) 

blocking filter was used to obtain a single band covering most of the NIR spectrum (NIR(R72)) and 

two bandpass filters were used to obtain a narrow NIR wavelength band round 710 nm (NIR(BP1)) 

and 828 nm (NIR(BP2)). Figure 2 shows the filter transmission spectra and additional specifications 

are listed in Table 2. Relative ambient light conditions were estimated with an ATP DT-1309 Auto 

Ranging Light Meter.  
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Figure 2. Transmission spectra of BP1 and BP2 bandpass filters and CC1 and R72 

blocking filters based on manufacturers specifications (maxmax.com). Submerged 

macrophyte spectrum included with dashed red line for comparison. 

Table 2. Specifications of lens filters used to obtain a six-band multi-spectral image. 

Band Name Filter Type Transmission Characteristics 
Estimated 50%  

Band Cuts 

Blue MaxMax X-Nite 

CC1 NIR 

blocking filter 

centre: 483 nm; 50% transmission: 325 

nm, 645 nm 

400–500 

Green 500–570 

Red 570–645 

NIR(R72) Hoya R72 VIS 

blocking filter 

>720 nm 

720–1000 

NIR(BP1) MaxMax 

XNiteBPB band 

pass filter 

5% low cut to 5% high cut:  

650 nm to 787 nm 

50% low cut to 50% high cut: 662 nm 

to 753 nm 662–753 

NIR(BP2) MaxMax 

XNiteBPG band 

pass filter 

5% low cut to 5% high cut:  

735 nm to 935 nm 

50% low cut to 50% high cut: 795 nm 

to 860 nm 795–860 

2.4.1. Depth Mapping: Radiometric Correction 

Before undertaking further image analysis radiometric and geometric pre-processing steps were 

applied to the image data. Firstly, removal of two types of radiometric anomalies seemed necessary, 

namely sunglint and a form of hotspotting or lens flaring. The latter is an anomaly caused by internal 

reflection of light within the camera, lens, and filter combination which occurred only in the NIR(BP2) 

band. The effect is known to occur quite frequently in the NIR wavelengths and some 

camera/lens/filter combinations are more prone to it than others. According to unverified sources and 

personal experience the occurrence is however also dependent on aperture settings and does not 
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necessarily occur under all light conditions. The problem was not identified in the field so a flatfield 

image showing the same pattern, which would enable radiometric correction, was not produced on site. 

Attempts to recreate the effect at a later stage failed. Alternative correction methods as suggested  

in [23] were also not suitable due to the uniform scene content in our dataset. Instead the usefulness of 

applying an image based correction method to affected images was evaluated. This involved creating a 

continuous image correction mask, which represents the radiometric variation due to flaring. This was 

done by determining lowest image values along each of 90 concentric circles with increasing diameter 

and the same midpoint as the flare banding. Lowest image values for each circle were plotted and 

interpolated using a five-point moving average. The resulting spectral sinuosity was applied across the 

full image surface, resulting in a mask which was then subtracted from the original image. 

For marine environments, models have been developed to remove sunglint from images of water 

surfaces. They mask glint based on sun-viewing geometry, using surface slope statistics. This approach 

is not suitable for high resolution data (<100 m) [24]. In fluvial environments surface topography is 

dependent on other factors than wind speed, while wind direction in the river channel will be 

unpredictable. Alternative methods using NIR/VIS differences are also not suitable for this situation as 

they assume little or no upwelling NIR radiance (e.g., from benthic vegetation) [24]. Instead sunglint is 

dealt with by excluding the highest DN values from the model calculations. Due to the relatively small 

depth/DN samples it was possible to manually check whether observations were removed from the 

samples for valid reasons (i.e., being glint). Additional issues are caused by skyglint in the VIS 

images; however no adjustments were made for this effect. 

2.4.2. Depth Mapping: Geometric Correction 

A commonly used form of geometric correction is lens barrel correction. No lens profile data could 

be found for the lens used in this project to perform this in image analysis software. Instead the 

distortion was assessed by photographing a regular grid and correcting the grid line curvature in 

Photoshop. This required a correction of less than 1% in both horizontal and vertical direction, which 

corresponds with the claims of Tamron (tamron-usa.com) that the aspherical lens type eliminates 

aberrations and distortion. No geometric correction was therefore applied before image co-registration.  

All images for a site were co-registered using image-to-image tie points which consisted of four 

fixed ground control points that were included in all photos plus additional features identified in 

multiple photos. Second order polynomial transformations were applied which resulted in root mean 

squared errors (RMSE) ranging from 0.1 to 10 cells (≈ 0.2 to 24 mm). The larger errors are likely to be 

due to the fact that tie points in addition to the four ground control points were impossible to locate on 

the moving water surface and were difficult to find on the grassed banks. The final image layers were 

obtained by nearest neighbour resampling of the transformed data resulting in images with a resolution 

of 2.4 mm. Combinations of six different image layers were stacked into a single multi-band file. Parts 

of the scenes not covered by all image bands were cropped before further analysis.  

2.5. Depth Mapping: Depth Data Collection 

Immediately after collection of the multi-spectral image data, a set of submergence depth 

measurements was manually taken from the SAV within the camera field of view. This was done by 
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outlining vegetation at a range of depths below the water surface with bamboo sticks. Sampled depths 

ranged from 0 to 60 cm below the water surface with intervals of 10 cm. The positions of the  

bamboo-sticks were photographed and the photos were co-registered with the multi-spectral image 

composite. In each photo circular polygons (app. 18.5 cm in diameter) were digitized at the depth 

measurement locations and used to extract spectral information for vegetation at that point from the 

multi-spectral composites. Image data samples extracted from within the polygons consist of, on 

average, 4000 pixels and are thought to represent a sufficiently large homogenous section of 

vegetation. From each of these spectral samples basic DN summary statistics (maximum, minimum, 

mean, and standard deviation) were calculated. The image and depth data collection was repeated for 

all four sites. 

2.6. Depth Mapping: Analysis  

The polygon DN statistics were used as equivalent to the total at sensor radiance to calculate 

variable X as in Equation (1). By doing this we followed the assumptions for clear shallow water that 

allow simplification of the total at sensor radiance and depth relationship, as suggested in [15]. Taking 

the ratio of two wavelength bands eliminates the effect of substrate variation as this would not have 

much influence on the ratio value, while the ratio would change with depth due to the difference in 

attenuation for different wavelengths. Because this study only looked at vegetation cover (i.e., relatively 

little variation in spectral signatures amongst the cover compared to variation in signatures due to 

submergence depth), we also investigated the radiance-depth relationship using log-transformed DN 

values of individual bands. Although this will remove the advantages of substrate independence as 

well as possibly increased sensitivity to lighting conditions, the approach may be warranted, because 

the image composites used in this study were based on multiple photos. The implications of this will 

be considered in the discussion. The coefficients of determination for all individual bands and all band 

combinations will be presented in a 6 × 6 matrix representing each of the six image bands, similar to 

the OBRA plots used in the first phase of the project. 

The linear models that best describe the water depth dependency of each band (combination) at each 

measurement site were then selected to create submergence depth maps from full images. The ability 

of these models to predict submergence depth from image DN values was validated in two ways: 

firstly, the model equations were used to estimate depth for a set of 15% of the sample points that were 

randomly selected from the data and had not been used in the model development. Secondly, the 

equations were used to estimate depth values from DN values of images from the other three 

measurement sites. The predicted depth values were compared to the modelled values, using a 

regression analysis. The R
2
, standard error, slope, and intercept of the resulting regression equations 

were used to assess the agreement between the observations. The final SAV bathymetric maps were 

post-processed using a 4 × 4 spatial mean filter to remove small scale noise (of unknown origin), before 

applying hill shading to enhance the Digital Elevation Model (DEM) display. 
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3. Results 

3.1. OBRA Plots Based on Field Spectroscopy Data 

Figure 3 shows the OBRA coefficient of determination values as images where row numbers 

represent the X numerator wavelengths (Equation (1)) and the column numbers, the denominator 

wavelengths. The shades in the bottom triangle of each image represent the OBRA R
2
(λ1, λ2) values. 

The shades in the top half indicate for each band combination the significance of the results with 

significance level of 95% in medium-grey and of 99% in light-grey. The top half of each image also 

contains the maximum R
2
-values (‘R

2
 max’) obtained for each species.  

 

Figure 3. Optimal Band Ratio Analysis (OBRA) plots showing strength of image band 

ratio—depth associations for (a) Water Milfoil, (b) Pondweed, (c) Water Crowfoot, (d) all 

species. Bottom half R
2
-values; top half 99% significance level (light-grey) and 95% 

significance level (medium-grey). 

OBRA plots show rather similar patterns for each of the three species individually and for all 

species combined. All species combined, Water Crowfoot and Milfoil show the highest coefficient of 

determination values for band combinations with one band in the NIR region between 825 and 925 nm 

and one band in the VIS region (400 to 700 nm). The strong association of depth with band 

combinations including one band in the NIR region is to be expected as, in these wavelengths, water 
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absorption strongly increases. It is further notable that the ranges of most suitable wavelength 

combinations vary slightly for the different vegetation types. The associations for Pondweed were less 

strong than for the other species. Association patterns throughout the NIR follow the water absorption 

curve (as shown in Figure 1), with a clear decrease in the coefficients of determination when both 

wavelengths fall between 765 and 810 nm corresponding with a slight reduction in water absorption, 

as well as an O2 absorption feature at 761 nm. Associations are not very strong in the VIS wavelength 

region, where only Water Crowfoot produces R
2
-values of over 0.5 for combinations of green 

wavelengths. Some of the lowest R
2
-values in this region (655 nm, 670 nm) are associated with 

chlorophyll absorption. All macrophyte species however still have some wavelength combinations in 

the VIS range that are significantly (99%) correlated with depth. 

3.2. Depth—DN Relationships 

Figures 4a–d show a number of images obtained for site 1b. This includes the three NIR bands and 

a false colour composite composed of bands R, G, and NIR(R72). All images include the polygons 

from which DN samples were taken, which correspond with the depth measurement locations. Figure 9 

contains RGB photos of all three sites. Cloudy weather at the time of sampling provided sub-optimal 

conditions for data collection. The reduced light availability resulted in reduced reflectance from the 

submerged vegetation surfaces and has affected the resulting water depth—DN relationships. Relative 

ambient light conditions are listed in Table 3. 

 

Figure 4. Image (composite) bands for site 1b: (a) NIR(BP1); (b) NIR(BP2); (c) 

NIR(R72); (d) False colour composite based on R, G, and NIR(R72). Black circles indicate 

depth/DN sample locations.  
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Table 3. Time and light conditions during acquisition of image bands at each site. 

Site No. 
Approximate 

Sample Time 
Filter 

Range of Light 

Conditions (kLux) 

1a 11:15–11:25 CC1, R72, BP1, BP2 43.3–47 

1b 12:10–12:20 CC1, R72, BP1, BP2 75.9–79.3 

2 13:40–13:50 CC1, R72, BP1, BP2 97.3–100.1 

3 13:25–13:35 CC1, R72, BP1, BP2 108–123 

 

 

Figure 5. Natural logarithm of maximum DN values versus sample depth for samples from 

all sites for (a) NIR(R72); (b) Red/NIR(BP2) ratio. Sample numbers per site: site 1a  

(♦; n = 87), site 1b (●; n = 84), site 2 (■; n = 47) and site 3 (▲; n = 30). All shown model 

coefficients are significant at α = 0.05. 
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Figure 5a,b show a selection of the scatter diagrams that were created for water depth measurements 

versus the natural logarithm of the maximum pixel values of the spectral samples from the image 

bands and band ratios. Figures are included for NIR(R72) and the red/ NIR(BP2) band ratio. Each 

figure shows the results from all four measurement sites. For most bands and band ratios the maximum 

DN value statistic resulted in the most significant relationship with water depth, compared to other 

statistics. This was expected as reflectance from the vegetation surfaces are very heterogeneous due to 

gaps and shading. Pixel mean values will therefore be extremely variable and always under-represent 

top of canopy reflectance. Although maximum values may over-represent reflectance in case of 

exceptionally bright leaves or sunglint, these are thought to be minor errors.  

 

Figure 6. Optimal Band Ratio Analysis (OBRA) plots showing strength of image band 

ratio—depth associations for multi-spectral image composite bands and band ratios for  

(a) site 1a; (b) site 1b; (c) site 2; (d) site 3. Bottom half of each figure shows R² values of 

band ratios (white font). Diagonal values in black represent R² values for individual bands. 
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The distribution of R
2
-values amongst all wavelength bands and band ratios is illustrated in  

Figure 6 a–d, using the same approach as for OBRA in the first project phase. Two marked differences 

in this display are the inclusion of R
2
-values for the relationships of individual bands with depth on the 

central diagonal line of the plot and the presence of overlapping bandwidths, in this case NIR(72) and 

NIR(BP2). The figure shows clear differences in the strength of the relationships with depth amongst 

the individual wavelength bands and band ratios. Compared to the NIR bands, the VIS bands perform 

clearly less well. Although the blue band shows strongest associations when used on its own, it 

performs less well when used in a band ratio with most of the other bands. The red and green bands on 

the other hand perform poorly individually, while they show some of the strongest associations when 

combined with NIR bands. The best performing individual infrared bands are NIR(R72), covering the 

whole NIR region, and NIR(BP2), which is centred around 828 nm. The Red/NIR(R72) band ratio 

seems to slightly outperform the Red/NIR(BP2) combination, though the differences are very small 

and vary across the measurement sites.  

The band (ratio)—depth relationships found for the different sites tend to have similar slopes. 

However, in particular the intercept of site 1a for most band (ratios) is considerably lower than those of 

the other three sites. This difference is expected to be due to the illumination conditions during the 

sampling of this site. Samples for site 1a were taken at the same location as site 1b, so between these 

two sites other factors influencing the results should be limited. Further improvement of light 

conditions during sampling at site 1b, 2, and 3, was expected to result in slightly higher reflectance at 

site 2 compared to site 1b, but this was not the case. Additional influences, perhaps the different, 

brighter, and shallower vegetation on site 1b, may have been the reason for this.  

3.3. Depth Modelling 

Observations from site 1b were assumed to provide the most reliable reflectance-depth model. Not 

only does the site quite consistently show the highest R
2
-values, it also contains the rather dense Water 

Starwort, which is likely to provide more consistent reflectance values than the loose leaves of  

Broad-Leaved Pondweed at sites 2 and 3. Although the associations based on band ratios were 

generally weaker than for some based on individual bands, the best of each was used for further depth 

mapping. A band ratio based relationship was included as it was expected to provide a more reliable 

basis for a bathymetric model compared to individual bands. The regression equations for band 

NIR(R72) and band ratio Red/NIR(BP2) from site 1b were selected for further depth modelling. 

Although band ratio Red/NIR(R72) for most sites shows a slightly stronger association with depth, the 

differences with the Red/NIR(BP2) band ratio are minimal. The main reason to choose Red/ NIR(BP2) 

band ratio is that the wavelength range covered by this band combination (red: 570–645 nm; 

NIR(BP2): 795–860 nm) overlaps closely with the findings from OBRA in phase one of the project. 

This showed that band combinations including both a NIR band between 825 and 925 nm and a band 

in VIS had the strongest association with water depth. The selected relationships were significant at 99%. 

The regression equations used for mapping of depth (de) were as follows for the ratio based 

equation, which used the Red/NIR(BP2) combination: 

de = (ln(DNRed/DNNIR(BP2)) − 0.4439)/0.0155 (R² = 0.73) (4)  
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and the equation for the single band, using NIR(R72): 

de = (ln(DNR72) − 5.3061)/ (−0.016) (R² = 0.77) (5)  

3.4. Model Validation 

The scatter diagrams of Figure 7 compare the depth values estimated with both models for the 15% 

data excluded from the model development and the values measured in the field. The validation data 

show high R
2
-values for both models (0.74 for Red/NIR(BP2) and 0.95 for NIR(R72)), which suggest 

a good agreement between model predictions and reality, but they do not exactly follow the 1:1 line 

that would confirm accurate prediction. The Red/NIR(BP2) band ratio model seems to slightly under 

predict depth. In the case of NIR(R72) model, the lower depth values are under predicted and the 

higher values over predicted. In both cases the results may be influenced by a large number of 

observations at the water surface, some of which have relatively higher spectral values, because the 

vegetation is not actually covered by a water layer. Under uncovered conditions the relationship will 

not be valid.  

 

 

Figure 7. Depth estimated with (a) NIR(R72) model and (b) Red/BP2 ratio model versus 

measured depth for samples from site 1a (♦; n = 87), site 1b (●; n = 84), site 2 (■; n = 47) 

and site 3 (▲; n = 30). Dashed line indicates 1:1 line. All shown model coefficients are 

significant at α = 0.05. 
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Figure 7a,b also contain scatter diagrams of measured and predicted depth values that result from 

applying the model to the sample points of site 1a, 2, and 3. They confirm the pattern that would be 

expected from the original data. Both models clearly overestimate the depth values for site 1a, as they 

associate the low DN values in this image with deeper water. The values for site 2 are also slightly 

overestimated, although this cannot be directly explained by the light conditions. Depth values for  

site 3 hover around the 1:1 line and the site 1b results, which suggests that the predictions are quite 

good. The slope of the regression is however different, which indicates that there are other 

complicating factors.  

The mean of the absolute depth error (Δ̅y̅) is 32.4 cm for estimates of site 1a depth with the 

NIR(R72) model. Δ̅y̅ for the other three sites range between 9.0 and 11.5 cm. The Δ̅y̅ for site 1a depth 

estimates with the Red/NIR(BP2) model is 30.6 cm while the values range between 12.1 and 13.5 cm 

for the other three sites. Figure 8 shows the measured depth versus model error of the NIR(R72) model 

for the data from each site. For site 1b only validation data was used. For this site the diagram suggests 

there is a significant association between depth and model error (α = 0.05). However, no significant 

relationships were found when the model was applied to any of the four full datasets, so we expect that 

result is not representative and assume there is no depth bias in the model results. 

 

Figure 8. Scatter diagram of measured depth versus NIR(R72) model error for samples 

from site 1a (♦; n = 14,), site 1b (●; n = 84, validation data only), site 2 (■; n = 47) and  

site 3 (▲; n = 30). 

3.5. Depth Mapping 

DEMs were calculated for each site using the two best models derived from the data of site 1b 

(Equations (4) and (5)). The resulting DEMs clearly show the superior performance of the NIR(R72) 

model (Figure 9b). The ratio based DEM is strongly affected by the fact that its layers were not taken 

simultaneously. Movement in the vegetation between layer acquisition causes clear ‘noise’ in the data 

as it causes short distance contrast in ratio values. Figure 9 d,f show the DEMs for the other two sites, 

again based on the NIR(R72) model. The topographic data created for the three sites appear highly 

realistic. The modelled depths range from around 5 to 105 cm, so the error is approximately 10% of 

this depth range. 
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Figure 9. RGB composite of site 1b (a); DEM of site 1b based on NIR(R72) ratio-model (b); 

RGB composite and DEM based on NIR(R72)-model for site 2 (c,d); RGB composite and 

DEM based on NIR(R72)-model for site 3 (e,f). All DEMs have been smoothed with a  

5 × 5 filter. Hillshade is added to enhance the visibility of the relief. Black lines show 

manually digitized outlines of vegetation patches. Legend is included in Figure 9f.  

3.6. Preprocessing Evaluation 

While it was possible to manually exclude cells affected by sunglint from the analysis, removing the 

radiometric effects of flaring was more difficult. Removal based on an image-derived mask was 

attempted for a strongly affected NIR(BP2) image of site 1b. Minimum DN values were extracted 

from the affected image as described in Section 2.4.1. After interpolation the values showed a 
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sinusoidal pattern, as well as a trend of decreasing radiometric values away from the centre of the 

image. The latter observation suggests that there may also be some vignetting occurring.  

The pattern was extrapolated across the image area to create a mask, which was subtracted from the 

original image. This clearly reduced the flaring/vignetting effect, as can be seen in the image close-ups 

in Figure 10. Alternative depth models were calculated for the corrected data. The R
2
 of the model for 

site 1b based on NIR(BP2) data (n = 84) actually reduced from 0.75 before to 0.72 after radiometric 

correction of the flare effect. When the correction method was applied to the NIR(BP2) image of  

site 2, the result was even less successful, as the image shows a clear shadow area on the water, which 

results in extra low minimum DN values for the circles crossing this area. The correction is clearly 

affected by this. Since the correction did not clearly improve the model results, no further attempts 

have been made to make corrections for the remaining images. All subsequent analysis results are 

based on data corrected for sunglint only. 

 

Figure 10. Comparison of NIR(BP2) image for site 1b before (a) and after (b) radiometric 

correction of flare effect (‘temperature’ style colour ramp used to enhance DN variation).  

4. Discussion 

4.1. OBRA Band Selection 

The OBRA analysis, based on the field spectroscopy data, showed that good estimates of SAV 

submergence depth should be possible based on a combination of VIS and NIR bands. Slight 

variations exist in best performing band combinations between individual SAV species, with Water 

Crowfoot showing the strongest overall water depth–band ratio association. The combined assessment 

of all species, however, results in associations of similar strength as most individual species for an 

equally wide range of wavelength combinations. This indicates that the effect of spectral variation in 

vegetation is subsidiary to spectral variation due to depth changes and a single model should provide 

sufficiently accurate results for many applications that require information on spatial distribution  

of SAV. 

The OBRA plots show some similarities with those of [15], for example the low R
2
 values at the 

chlorophyll absorption feature around 675 nm. However, the highest associations are found for rather 

different wavelength combinations. Legleiter et al. [15] found that the log transformed band ratio X of 
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reflectances at 586 and 614 nm was strongly related to depth (R
2
 = 0.945) independent of suspended 

sediment concentrations, Rb(λ), and water surface state. For our vegetation examples, wavelengths in 

this region have consistently very low R
2
 values (significance <95%). Instead a slightly unexpected 

combination of one band in the NIR region between 825 and 925 nm and one band in the VIS region, 

was found to have the highest correlation values. In [15] the NIR bands of simulated reflectance 

spectra of substrate at different submergence depths were not selected as suitable for depth retrieval. 

They assumed this to be due to saturation of the radiometric signal at greater depths. For spectra 

measured in the field, which covered a smaller depth range, NIR bands were identified as most useful 

for depth retrieval (although wavelength ranges measured did not go beyond 900 nm). Though the 

saturation effect should be even greater for the longer wavelengths selected in this study, it apparently 

does not affect the vegetation signatures within the limited depth range of the chalk streams observed 

in this study.  

4.2. Depth Mapping with Multispectral Data 

Testing the best band ratios found for depth mapping through OBRA would require hyperspectral 

image data at a spatial resolution that allows delineation of SAV patches. This kind of data is currently 

not commonly available. Instead six-band multi-spectral image composites were created, using a NIR 

sensitive DSLR camera. Based on a field dataset of SAV submergence depths, regression models were 

developed that enabled mapping of submergence depth from image DN values. The results from this 

analysis confirmed the previous OBRA findings, with similar combinations of VIS and NIR providing 

strongest associations. However, NIR single band associations with depth resulted in even better fits. 

Overall, it has become clear that it is possible to map submerged vegetation bathymetry, using optical 

image data obtained with a consumer grade camera. This study also showed that it does not necessarily 

require combinations of very narrow hyperspectral bands to do this, but that good results were possible 

with broadband data of high spatial resolution. Under sub-optimal data collection conditions (as 

discussed below) the mean of the absolute depth error was within 10% of the observed depth range, 

which is thought to be satisfactory. However, we do need to stress that there was considerable 

variability in the error observed. So an individual depth estimates obtained for a specific point can still 

be quite far off the true submergence depth. A considerable benefit of the novel proposed approach is 

the very low cost of data acquisition.  

In this study, the decision was made to use the model derived from the image taken under the ‘best’ 

conditions to estimate depth for all sites. In the case where water column, water surface, and weather 

conditions were constant for all sites this would mean that only the spectral variation in vegetation 

surface reflectance would affect model performance. Unfortunately the rather variable 

weather/illumination conditions do not allow to attribute the discrepancies found between measured 

and predicted values to this factor only. However, the use of a band ratio in one of the two models was 

expected to eliminate variation in the magnitude of model error between the sites due to differences in 

surface cover types [19]. Since the ratio based model showed very similar variation between the sites 

compared to the single band model, the effect of vegetation variation is expected to be minimal. The 

‘best’ estimate models may therefore be suitable for wider application in vegetated streams, though 

further investigation of the impact of other factors on the model is needed. 
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4.3. Limitations of Data Collection and Analysis  

A number of sensor characteristics of the consumer grade digital camera and filters used for image 

data acquisition, as well as the procedures chosen for image analysis may have affected the outcomes 

of this study. They are discussed in the following sections.  

4.3.1. Sensor Platform and Image Registration 

The presented approach uses a pole fixed with guy ropes as camera platform. This set-up can be 

installed in less than 15 min, but is not suitable for covering larger river sections. More portable pole 

platforms are possible [25], but ideally full river reaches will be photographed from a UAV. Further 

research is needed to test how well the models perform on the lower resolution imagery obtained from 

such more elevated kind of platform. All suggested platforms have in common that they require  

co-registration of image bands taken at different times. This is a major weakness, as the process is time 

consuming and a perfect match is impossible in the continuously moving submerged environment. 

Some registration improvement may be achieved by increasing the number of ground control points, 

but is likely to be insignificant compared to the error due to plant moment. The resulting mismatches 

between bands create an unwanted texture in the DEM as demonstrated in the ‘Depth mapping’ 

section. The problem can be resolved by using multiple synchronized cameras [26]. In this project it 

was not an option as we needed to test multiple filters and handling more than one FujiFilm DSLR 

cameras at a time would have been challenging. However, when optimal filter combinations are 

known, a setup with two or three NIR converted compact cameras may suffice. Overall, we do not 

think that ‘misregistration’ will have had an influence on the final conclusions drawn from this 

research, as the 2 cm error becomes insignificant within the 18.5 cm diameter sample polygons. 

4.3.2. Spectral Resolution 

Furthermore the spectral resolution of the data was low, so the exact bands determined with the 

OBRA method could not be used. The fact that the closest possible combination provided the best 

results is encouraging. Interference filters do exist that allow image acquisition in spectral bands much 

narrower than the broad bands used here. Filters for wavelengths that corresponded better with the 

results obtained in the OBRA study may result in models with better R
2
 values. However, the best 

band combinations do vary for different types of vegetation, so it is possible that the broad band filters 

allow for better overall results. Narrow bandpass filters require more sophisticated optical systems to 

ensure a consistent spectral response [27]. The image quality was already quite low for the NIR(BP2) 

bandpass filter.  

4.3.3. Image Compression 

Shooting 12/14 bit RAW rather than TIFF images may improve analysis results and is 

recommended for scientific applications [22]. However, practical application is compromised while 

some studies have shown that compression does not necessarily affect results when doing radiometric 

assessment using consumer grade cameras [23]. Researchers regularly use even poorer quality (JPEG) 
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data with good results as the larger RAW file sizes may not be suitable for continuous shooting from 

UAV platforms (e.g., [28]). 

4.3.4. Flaring or Hot-Spotting and Other Filter Related Issues 

In particular the images of band NIR(BP2) were affected by a phenomenon called ‘flaring’, which 

is caused by internal reflection of light between the camera lens and some of the applied filters [29], 

resulting in circular shaped variation in pixel brightness (see Figure 4b). An attempt to remove the 

effect from one of the NIR(BP2) images did not seem to improve the model fit. It reduced the depth 

dependency of the DN value. This could be partly due to the fact that water depth decreases in most 

directions away from the centre of the photo, while the mask DN values also decrease away from 

highest values in the centre. Subtraction should therefore lead to a reduction in the depth-DN 

relationship. So, although the radiometric correction removed a trend and sinuosity in the data it did 

not clearly improve the results. Complex shading and reflection patterns also made the pre-processing 

approach less suitable for some other images. It was therefore not used to obtain final map products. 

Improvements can be made to the model results by finding a camera/lens/filter combination which 

does not produce similar radiometric anomalies. 

4.3.5. Diffuse Light, Surface Reflection and Shading 

Due to the mostly cloudy weather during image data collection, diffuse light reflection at the water 

surface was clearly visible in the VIS wavelength band images. This may have affected the model 

performance in these wavelengths; however the results from the OBRA part of the study already 

indicated the limited use of VIS wavelength for SAV depth mapping. NIR wavelength bands were 

visibly less affected by reflection, though the lower light intensity still lowered the model intercepts. 

A more complex problem is caused by a combination of shading and water surface reflection. 

Reflection causes ‘images’ from the surrounding landscape elements on the water surface. In particular 

the NIR bands clearly show bright pixels that represent reflection of vegetation on the river banks. This 

effect is best visible in the NIR(R72) band of site 2 (Figure 11). The relatively high NIR(R72) values 

in the top half of the photo, where reflection of vegetation at the water surface was strongest, resulted 

in a clear underestimation of the water depth (and thus a higher DEM surface elevation) as can be seen 

in Figure 10d. Shading of the water surface by the river bank, causes an opposite problem, which can 

be seen most clearly in the DEM for site 1b based on the NIR(R72) model (see Figure 9b). In the DEM 

for this site a strip of water next to the top bank shows clearly overestimated water depths 

(approximately 0.4 m). Errors of similar magnitude due to shading effect on water depth estimates 

were found in [16] for the Laramie River in Colorado, US.  

Since the spectral signatures of the water surfaces with vegetation reflection and shading will form 

complex mixtures with to those of the submerged vegetation and other substrate [30] it will be difficult 

to mask out their effect. However, since the effect occurs mostly along the edges of the water and most 

depth measurements were taken more towards the middle of the stream cross sections, the effects on 

model development are thought to be small. The effect on DEM mapping are however important. 

While in-air and in-water adjacency effects have been observed and investigated for some time in  
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fluvial [15,16,30], lake, and coastal [31] environments, no solution to either of these problems is 

however currently known. Clearly further work is needed to find suitable correction methods. 

 

Figure 11. NIR reflection at water surface (light haze in top half of the reach); Band 

NIR(R72), site 2. 

4.3.6. Bidirectional Reflectance Distribution Function (BRDF) 

A commonly occurring problem with remote sensing of vegetation is the bidirectional reflectance 

distribution function (BRDF) effect. As vegetation is illuminated from different directions its 

reflectance will be different at different points in the image. However, by using the highest values from 

our spectral samples rather than average values this problem will to some extent be limited. In addition 

to this the camera was in vertical position for all photos. Various studies have shown how BRDF only 

becomes significant under sufficiently large viewing angles (e.g., [32]) and exactly how the effect 

works in submerged environments is an area of ongoing research. 

4.4. Application Potential 

This study focused on the potential to map submergence depth of SAV using a consumer grade 

camera as sensor. The results show that in sufficiently shallow and clear streams there is the potential 

to create a combined model for both vegetated and non-vegetated surfaces to map the full river bed 

bathymetry including the vegetation. It will depend on the application of the model whether a 10% 

error is acceptable. A clear limitation of the method presented here is that it can only provide a ‘2.5D’ 

representation of the vegetation structure. The spectral data cannot give information on what happens 

below the plant surface. Additional thought is required on how to transfer the information satisfactorily 

into 3D flow models. 

Another limitation is the depth at which this method will work. Lejot et al. [13] found that the 

method could measure bottom depth up to 5 m using VIS wavelengths. For NIR based estimates this 

will be less due to the stronger attenuation of these wavelengths. However, as SAV requires light to 

thrive, most activity/biomass of SAV will be present in shallow and relatively clear water only.  
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The OBRA results were obtained from different species than present in the depth mapping exercise. 

Similar wavelength regions were found to be useful and several species were included in the depth 

mapping exercise. We therefore assume that the model is applicable to a wider range of vegetation 

species, but further testing is required here. 

Most studies of submerged vegetation in marine and other aquatic environments do not include the 

wavelength bands of the NIR. This study showed that the NIR wavelengths and in particularly those 

beyond 800 nm contain some important information, which seems to be different from land-based 

vegetation where normally the red edge is used to gain information about vegetation type and health. 

In [33] it was already pointed out that the NIR bands are also useful for SAV species detection. 

Although these findings may not apply to marine environments which are generally much deeper, it 

seems important to incorporate reflectance estimates beyond 800 nm when studying submerged 

environments with abundant SAV. 

5. Conclusion 

As consumer grade cameras are still the most commonly used sensors on low-altitude remote 

sensing platforms such as UAVs more research into their use to map, for example, the spatial 

distribution of fluvial properties is warranted. In particular, in small river systems image data collected 

with such cameras can be of great use. The results of this study show specifically how mapping the 

extent and submergence depth of submerged aquatic vegetation (SAV) shallow clear water streams  

is feasible. 

The study firstly identified which wavelength bands are most useful for spectrally based 

bathymetric mapping of SAV. A remarkable finding was that in particular wavelengths between 825 

and 925 nm are important, if not necessary for this purpose. This was not expected as this wavelength 

region is generally thought of little use, because of the very strong absorption of water in this 

wavelength region and it is very different from the most suitable bands found for non-vegetated  

river bottoms [15]. 

In addition to this, the study showed that reasonably accurate estimates can be made of SAV 

submergence depth distribution (with an average error of 10% of flow depth range), using  

multi-spectral image data that was easily and cheaply obtained with a near infrared (NIR) sensitive 

DSLR camera and a set of (bandpass) filters. The wavelength bands that were found to be most 

suitable for this purpose, were obtained with a VIS blocking filter (<720 nm) and a bandpass filter with 

maximum transmission between 795 nm to 860 nm. These findings correspond with the OBRA results, 

confirming the benefit of spectral information from these wavelength regions for SAV depth mapping  

Although spectrally based bathymetric mapping techniques have previously been successfully 

applied in non-vegetated streams, the findings presented in this paper make an important contribution 

to the development of these techniques by demonstrating how results are different in the presence of 

submerged aquatic vegetation (SAV). To obtain a full picture of submerged river environments it is 

important to make a link between the studies that looked at non-vegetated river reaches [16] and 

develop methods that allow simultaneous mapping of vegetated and non-vegetated surfaces, by 

combining the findings from both environments. This potentially requires procedures that can 
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accurately mask-out vegetated from non-vegetated areas, so that different band ratios can be applied to 

each in order to obtain the most accurate river bed maps.  

A much greater challenge will be obtaining a true 3D representation of the vegetation. The 

spectrally based method only provides a so called 2.5D version of reality. It does not allow us to see 

within or underneath the aquatic plant canopy. SAV species can have very diverse morphology and 

therefore respond differently to the surrounding flow/hydrology. Further research is required to find 

approaches that can more accurately represent this information.  
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