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ABSTRACT: 

 

Expected improvements of spatial and spectral resolution of remote sensing data in the near future will finally enable their 

application for the monitoring of some of the UK’s most biodiverse ecosystems: lowland chalk streams. The possibility to remotely 

map cover extent and submergence depth of chalk stream macrophytes could improve biomass estimates and help understanding of 

macrophyte community dynamics. This study aims to improve Ranunculus (Water crowfoot) submergence depth estimates from a 

Specim Eagle hyperpsectral image taken of the River Frome in Dorset, UK by combining data from previous studies. NDVI values 

calculated from Ranunculus vegetation spectra measured with a GER1500 show a depth dependence, which corresponds well with 

modelled values. NDVI values extracted from the image data do not show a similar relationship. The results highlight the difficulty 

of obtaining accurate submergence depth information when vegetation cover and submergence depth vary at sub-pixel level.  

Data quality issues also hamper image analysis at this level of detail. Blurring/smearing of the data will have affected the NDVI-

submergence depth relationship derived from the image. An attempt was made to improve the data quality by estimating an empirical 

Point Spread Function (PSF) from the bank vegetation - river water interface and trialling different deconvolution algorithms and 

input parameters. The application of this method was unsuccessful and specified some of the limitations of a technique that has been 

successfully applied in other situations. 

 

1. INTRODUCTION 

1.1 Chalk streams and Ranunculus communities 

Groundwater fed ‘chalk streams’ form a unique and important habitat in a national and international context. They are found in parts 

of the United Kingdom underlain by chalk bedrock, which determines their stable flow conditions, chemical water quality and high 

water clarity. In many chalk streams vegetation is dominated by river water crowfoot (Ranunculus penicillatus var pseudofluitans). 

This macrophyte forms a key component in the structural and biological diversity of the streams, by providing food and shelter for 

macroinvertebrates, shellfish and fish. Ranunculus community growth tends to be variable and may be influenced by stress factors 

such as water abstraction and mute swan grazing. The true dynamics are however not well understood, partly because of the 

difficulty of field data collection. There is no standardised method to sample macrophytes and methods used are often destructive and 

labour-intensive (Porteus et al., 2011). Due to their physical characteristics (e.g. low sediment concentration and shallow depth) 

chalk streams could make good candidates to apply remote sensing techniques as an alternative, non-destructive Ranunculus 

monitoring method.  

 

1.2 Study aims 

Some studies have started looking at using remote sensing for submerged chalk stream macrophyte species detection and biomass 

estimation, but so far they are few in number. Visser and Smolar-Žvanut (2009) investigated detectability of various species from 

above the water surface in the river Wylye in Wiltshire, using a GER1500 field spectroradiometer. Work by Hill at al. (2009) on the 

River Frome in Dorset, looked at estimating Ranunculus submergence depth from a Specim Eagle hyperspectral image. Their aim 

was to map abundance of Ranunculus and identify grazing pressure from mute swans. 

The study described in this paper firstly combines data from both these previous studies with the aim to improve abundance 

mapping/biomass estimation. The detailed vegetation spectra obtained in the field by Visser and Smolar-Žvanut are used to obtain 

more accurate submergence depth estimates from the hyperspectral image data of Hill et al. However, during the course of the study 

it became clear that quality issues regarding the Eagle data hampered this first aim, therefore improvement of the data quality became 

a secondary aim of the study.  
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2. DATA AND METHODS 

2.1 Field spectroradiometer observations 

During the study by Visser and Smolar-Žvanut (2009) reflectance spectra were measured with a GER1500 above the water surface 

for a number of macrophyte species located at varying depths below the water surface. Spectra were also measured from vegetation 

specimens placed on a low reflectance black cloth out of the water. Based on the out-of-the-water vegetation spectra, submerged 

spectra were modelled for different depths, assuming attenuation of light by water absorption only (see Fig. 1). Reflectance from 

vegetation at depth lsim were calculated for each wavelength by: 
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Where I0 is the incident intensity of the light, As is the absorbance calculated from the out-of-the-water reflectance measurements, αλ 

is the absorption coefficient at wavelength λ (cm-1), and l is the path length (cm). 

 

 
 

Figure 1.  Measured and modelled reflectance spectra for Ranunculus above and at various depths below the water surface. 

 

Shape-wise the measured spectra corresponded well with modelled spectra based. The height difference between measured and 

modelled curves, increasing at lower wavelength, is expected to result from ignoring backscatter. Especially reflectance in the NIR is 

strongly affected by water absorption, but for the relatively shallow submergence depth of many macrophytes, the shape of the NIR 

part of the spectrum can still help discriminating different species. The species specific effect of the absoroption with depth can also 

be used to estimate submergence depth and may be used to improve on the waveband rationing as done by Hill et al. (2009). 

 

2.2 The Specim Eagle hyperspectral image and ground data collection 

Hyperspectral image data of the River Frome was collected with a Specim AISA Eagle sensor on 24/06/2008 during a NERC ARSF 

flight. The data covers a 20 km stretch of the downstream part of River Frome in Dorset and consists of 126 bands between 470nm 

and 970nm with 1m ground resolution. During the flight ground data was collected by a team from Bournemouth University. 

Atmospheric data was not collected on site at the time of the flight.  

Part of the ground data collected at the time of the flight are transects along which vegetation cover and submergence depth were 

recorded. Six transects were taken at each of two locations along the river near East Stoke. Each transect consists of 25x25cm 

quadrants for which total cover and average submergence depth were recorded. For this study pixel spectra were extracted from the 

image at the locations of the transect measurements. The image data spectra were then compared with the field spectoradiometer 

results to validate submergence depth – wavelength relationship derived from the field spectroradiometer data. 

 

2.3 Image restoration 

Initial assessment of the hyperspectral image data immediately brought up data quality issues. A blurring/smearing was observed, 

which was especially clear at the boundary between river and vegetated bank. In the studied reach the transition between bank and 
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water generally is less than a meter wide and mixing of the bank and water signals should not exceed two pixels. Initially the blurring 

effect was attributed to a combination of instrumental, atmospheric and environmental scattering, i.e. ‘adjacency effects’. Due to lack 

of atmospheric data for the collection date, an alternative method was attempted to reduce the blurring effect. This approach 

consisted of the estimation of an empirical Point Spread Function (PSF) and deconvolution of the data with this function. Several 

recent publications present the results of deconvolution alogrithms, often with some success (e.g. Jackett et al., 2011; Kopeika et al., 

2003; Rahmani et al, 2008; Ruiz and López, 2002). In many cases a-priori information is available on the shape of the PSF, however 

some studies have derived it from local contrast in image data values (e.g. Ruiz and López, 2002). 

 

A degraded image can be described as follows: 

 
        (2) 

 

Where Lm (x0, y0) is the measured radiance from pixel (x0, y0), PSF the point spread function and LT (i,j) the true radiance of pixel 

(i,j). For this study the PSF was empirically estimated using a method similar to that proposed by Ruiz and López (2002). Their 

restoration approach for SPOT images makes use of a PSF, which is estimated by extracting a Linear Spread Function (LSF) 

perpendicular to the edge of dam structures in ponds in the image. The derivative of the LSF with respect to position is the Point 

PSF. For the current study 5 radiometric profiles are plotted perpendicular the river bank. A function is fitted through the combined 

data points and a first derivative is estimated from the smooth radiometric step. Next a 2-dimensional PSF is obtained by assuming a 

uniform step in all directions and rotating and averaging the LSF across a 11x11 sized filter, which is then normalized. 

Deconvolution is performed with the MATLAB Image Processing Toolbox (Gonzalez et al., 2004), using both the Wiener and Lucy 

Richardson deconvolution tools. The Wiener deconvolution makes use of a NOISEPOWER (NSPR) which is estimated as MN[σ2
η + 

m2
η] where M and N are the dimensions of the processed image and the noise variance and noise squared mean. Finding the optimal 

value for this parameter however requires experimenting (Gonzalez et al., 2004). Subsequent information about the data showed that 

the blurring was largely the result of a sensor issue, for which so far no satisfactory solution is available (Panousis, 2010). The 

deconvolution results will be discussed in the light of this sensor information. 

 

3. RESULTS 

3.1 Field spectroradiometer vs. modelled vs. image data reflectance spectra 

For initial comparison of the Ranunculus spectra from the three data sources NDVIs were caclulated using the 675nm red band and 

the 798nm NIR band. These wavelenghts were expected to be least affected by atmosphteric conditions, while showing a differential 

response to water absostion. The NDVI calcuated from the field spectroradiometer spectra, modeled spectra and the image derived 

spectra will be referred to as NDVIfield  NDVImodel, NDVIimage, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. NDVI – submergence depth scatterplots for measure, modelled and image spectra. 

 

Fig. 2 shows the NDVI calculated from each data source plotted against submergence depth. NDVImodel and NDVIfield correspond 

well as was expected from previous comparison of the spectra. Most outliers with relatively low NDVI at 12cm and 32cm depth were 

noted to have microalgae cover on the macrophyte leaves. NDVIimage corresponded less well with the others. Due to the blurring of 

the radiometric data individual quadrant depth values were expected to be of little use. The values plotted in Fig. 2 were therefore 

obtained by averaging adjacent quadrants of all 6 transects at both sites and the two resulting depth transects were smoothed using a 

moving average. The averaging reduced the depth data range, but did not clearly improve the correlation. For most of the measured 

quadrants the vegetation cover was 100%, though quadrants near the edges of Ranunculus patches contained less vegetation cover. 

NDVIfield of GER1500 spectra 

 
NDVIimage of Eagle spectra 

 
NDVImodel of Modelled 

spectra 



 

The non-vegetated parts of these quadrants will affect the average radiance spectrum measured within the quadrant, though their 

number (app. 35% of vegetated pixels) should not have affected NDVI correlation with depth to the current extent. There may have 

been variation in submergence depth within quadrants, which will also affected the correlation, but the blurring/smearing of the pixel 

radiance values is expected to have had most influence on the NDVI – submergence depth correlation.  

 

3.2 Empirical PSF estimation 

Figure 3a shows radiometric profiles extracted from the Eagle image at five locations perpendicular to the river bank (Fig. 3b).  Data 

was extracted for three bands (34, 53 and 77). Wavelength did not seem to clearly determine the shape of the smooth radiometric 

step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
Figure 3. Radiometric profiles (a) extracted from three bands of the Eagle image (b) at five locations perpendicular to the river bank. 

 
A Gaussian function was fitted through the extracted data points and the first derivative LSF derived from this is shown in Fig. 4a. 

The 2D PSF filters derived from the LSF are shown in Fig. 4b (11x11m) and 4c (5x5m). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. LSF obtained from radiometric profile (a), 2D PSF derived from LSF with 11x11m (b) and with 5x5m (c) dimension. 

 
3.3 Deconvolution filter results 

The Wiener and Lucy-Richardson deconvolution algorithms were executed with both PSF filters sizes. The Wiener algorithm was 

also used with a range of NSPR values. The results of the deconvolution were assessed visually from the resulting images, and in 

more detail, by re-extracting and plotting the radiometric profiles that were used for PSF creation.  

 

Generally the Lucy-Richardson deconvolution seemed to produce best results, but none of the tested input parameter configurations 

produced a convincing image improvement. Fig. 5 shows the radiometric profiles taken from both the Lucy-Richardson and Wiener 

deconvolution image results. Profiles from the Lucy-Richardson image results are shown for both PSF filter sizes. Wiener 

deconvolution results are only shown for the 5x5m filter using an optimal NSPR parameter value (0.1). The Wiener deconvolution 

did not steepen the profile at all. Both Lucy-Richardson trails do show improvements for steepness, but in each case noise/variation 

beyond the step seem to increase as well compared the original data, which reduces the benefit of the deconvolution. 
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The optimal NSPR value for the Wiener deconvolution was estimated by trying a range of parameter values. Fig. 6a shows the results 

for a number of these trials which made use of the 11x11 PSF filter. Again little improvement of image sharpness is achieved with 

any of the parameter settings, but a too high NSPR value (1) clearly results in too much smoothing of the data. A too low value 

(0.01) on the one hand seems to steepen the profile, but also produces a ‘ringing’ parallel to the radiometric step, which is visible in 

the resulting image as ridges along each of the river banks (Fig. 6b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Radiometric profiles of results of 3 deconvolution methods (a) and image results of Lucy-Richardson deconvolution for 

band 77 (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 6. Radiometric profiles of results for Wiener deconvolution with NSPR 1, 0.1 and 0.01 (a) and an example of ‘ringing’ in the 

data when NSPR values become too low (here 0.01), as shown for band 77 by ridges on the river bed, parallel to the river bank (b) 

 

4. DISCUSSION 

4.1 Field data comparison 

NDVIfield values calculated from field spectroscopy measurements of submerged Ranunculus vegetation show some correlation with 

submergence depth (Fig. 2) as was observed by Hill et al. (2009) for the Specim Eagle data. The NDVImodeled – submergence depth 

correlation, based on out-of-the-water Ranunculus spectra using water absorption only, corresponds with the NDVIfield – 

submergence depth correlation. The NDVIimage values extracted from the Specim Eagle image however do not correlate with depth in 

the same way. Variation of NDVIimage values with depth is limited to a much smaller range. There are a number of possible 

explanations for this. Firstly the Eagle data has not yet been atmospherically corrected. Although the effect was not expected to be 

very big for the chosen wavelengths and normalized radiance values, the 675nm values would have been affected more strongly 

resulting in overestimation of the NDVI values. Secondly sub-pixel variation in vegetation cover and depth will affect reliability of 

the data to some extent. Finally the blurring of the image data is expected to have had a considerable impact through averaging-out 

the higher and lower NDVI values.  

 

The field spectroradiometer results look promising for remote detection of Ranunculus submergence depth, which could lead to 

vegetation biomass estimates. The airborne imaging spectroscopy data used in this study was however not well suited for 

applications at the level of detail required for chalk stream studies. Although improvements can be made through atmospheric 

correction of the data and resolution of the sensor problems, ultimately applications remain limited to areas with large vegetation 

patches and relatively uniform vegetation depth. The combination of strong depth dependence of the NIR vegetation signal and 

variation in submergence depth and vegetation cover at sub-pixel level make it difficult to obtain vegetation biomass estimates with 
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the current resolution of the hyperspectral imagery. With the development of higher spatial resolution sensors, or perhaps through 

fusion with hyperspatial data of lower spectral resolution, better results are likely to be achieved in the near future. Combination with 

of object-based image analysis techniques can also help identify boundaries of vegetation patches more accurately. 

 

4.2 Image restoration 

Data quality of the Specim Eagle image has been likely to affect the NDVI – submergence depth correlations discussed above. An 

attempt to restore the data with an empirical Point Spread Function (PSF) did not resolve the blurring/smearing problem. The Lucy-

Richardson deconvolution algorithm showed best results, but the advantage of a slight increase in the steepness of the radiometric 

profile was offset by undesirable enhancement of variation elsewhere in the image (e.g. ‘ringing’ along edges in the image).  

 

A number of different reasons can be identified to explain the disappointing results: 

1) The empirical PSF estimate is likely to be a major reason; more accurate estimates may improve deconvolution results, though 

heterogeneity of the bank and water signal and presence of submerged vegetation in the optically shallow water may limit further 

improvements. 

2) A recent report ascribe the blurring in the Eagle data to light falling onto a frame-transfer CCD during the shifting of image data 

into a temporary storage buffer. This stray light is registered as a smear in each line (Panousis, 2010). So, error found in the data may 

not be adjacency related (though a considerable range was also noted in along track bank/river boundaries) and the empirical PSF is 

only valid in the along-track direction, while the same line-spread function was used to create the PSF in all directions.  

3) Trials of deconvolution with a range of different input parameters indicated additional factors that significantly influenced the 

deconvolution outcomes: 

- The different deconvolution algorithms (Wiener and Lucy Richardson) generated different results.  

- The NOISEPOWER (NSPR) input parameter in the Wiener method strongly influenced the restoration outcome. 

- The choice of PSF dimensions is arbitrary but affects results by smoothing data or enhancing noise. 

4) Noise in the image is likely to be too high to allow image restoration as already suggested by Rahmani et al. (2008) and Kopeika 

et al. (2003). If too much noise is present this will be amplified and can actually reduce image quality. In other studies some of the 

issue were resolved by either starting with a denoising filter (Rahmani et al., 2008) or by using alternative deconvolution methods 

which improved results (Kopeika et al., 2003; Jackett et al., 2011). None of these alternative methods have been attempted here. 

 

The above discussion shows that there is room to improve the image restoration procedure, but also that the, to some extent arbitrary, 

parameter input compromises the suitability of the approach for studies where a similar level of detail is required  
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