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Abstract

Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants,

provide ecosystem services including carbon sequestration and forage for graz-

ing, and are highly sensitive to climatic changes. Yet these ecosystems are

ª 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

1

https://orcid.org/0000-0002-8346-4278
https://orcid.org/0000-0002-8346-4278
https://orcid.org/0000-0002-8346-4278
https://orcid.org/0000-0002-3289-2598
https://orcid.org/0000-0002-3289-2598
https://orcid.org/0000-0002-3289-2598
https://orcid.org/0000-0002-7612-3264
https://orcid.org/0000-0002-7612-3264
https://orcid.org/0000-0002-7612-3264
https://orcid.org/0000-0002-8715-0399
https://orcid.org/0000-0002-8715-0399
https://orcid.org/0000-0002-8715-0399
https://orcid.org/0000-0001-9451-5010
https://orcid.org/0000-0001-9451-5010
https://orcid.org/0000-0001-9451-5010
https://orcid.org/0000-0002-8417-6112
https://orcid.org/0000-0002-8417-6112
https://orcid.org/0000-0002-8417-6112
https://orcid.org/0000-0003-4608-955X
https://orcid.org/0000-0003-4608-955X
https://orcid.org/0000-0003-4608-955X
https://orcid.org/0000-0001-6362-4572
https://orcid.org/0000-0001-6362-4572
https://orcid.org/0000-0001-6362-4572
https://orcid.org/0000-0003-3710-0817
https://orcid.org/0000-0003-3710-0817
https://orcid.org/0000-0003-3710-0817
https://orcid.org/0000-0003-4299-1853
https://orcid.org/0000-0003-4299-1853
https://orcid.org/0000-0003-4299-1853
https://orcid.org/0000-0003-0989-3266
https://orcid.org/0000-0003-0989-3266
https://orcid.org/0000-0003-0989-3266
https://orcid.org/0000-0002-0541-3053
https://orcid.org/0000-0002-0541-3053
https://orcid.org/0000-0002-0541-3053
https://orcid.org/0000-0002-7246-2795
https://orcid.org/0000-0002-7246-2795
https://orcid.org/0000-0002-7246-2795
https://orcid.org/0000-0002-6065-3981
https://orcid.org/0000-0002-6065-3981
https://orcid.org/0000-0002-6065-3981
https://orcid.org/0000-0002-6903-8053
https://orcid.org/0000-0002-6903-8053
https://orcid.org/0000-0002-6903-8053
https://orcid.org/0000-0002-6943-9172
https://orcid.org/0000-0002-6943-9172
https://orcid.org/0000-0002-6943-9172
https://orcid.org/0000-0003-1464-3747
https://orcid.org/0000-0003-1464-3747
https://orcid.org/0000-0003-1464-3747
https://orcid.org/0000-0002-4476-8279
https://orcid.org/0000-0002-4476-8279
https://orcid.org/0000-0002-4476-8279
https://orcid.org/0000-0002-9130-5306
https://orcid.org/0000-0002-9130-5306
https://orcid.org/0000-0002-9130-5306
https://orcid.org/0000-0001-7275-9145
https://orcid.org/0000-0001-7275-9145
https://orcid.org/0000-0001-7275-9145
https://orcid.org/0000-0002-5702-4236
https://orcid.org/0000-0002-5702-4236
https://orcid.org/0000-0002-5702-4236
https://orcid.org/0000-0003-3913-0980
https://orcid.org/0000-0003-3913-0980
https://orcid.org/0000-0003-3913-0980
https://orcid.org/0000-0002-1073-4564
https://orcid.org/0000-0002-1073-4564
https://orcid.org/0000-0002-1073-4564
https://orcid.org/0000-0003-2554-4373
https://orcid.org/0000-0003-2554-4373
https://orcid.org/0000-0003-2554-4373
https://orcid.org/0000-0002-3326-3806
https://orcid.org/0000-0002-3326-3806
https://orcid.org/0000-0002-3326-3806
https://orcid.org/0000-0001-8773-8005
https://orcid.org/0000-0001-8773-8005
https://orcid.org/0000-0001-8773-8005
https://orcid.org/0000-0001-8849-8162
https://orcid.org/0000-0001-8849-8162
https://orcid.org/0000-0001-8849-8162
https://orcid.org/0000-0003-3960-3522
https://orcid.org/0000-0003-3960-3522
https://orcid.org/0000-0003-3960-3522
https://orcid.org/0000-0002-0917-4336
https://orcid.org/0000-0002-0917-4336
https://orcid.org/0000-0002-0917-4336
https://orcid.org/0000-0001-8733-9119
https://orcid.org/0000-0001-8733-9119
https://orcid.org/0000-0001-8733-9119
https://orcid.org/0000-0001-9666-5805
https://orcid.org/0000-0001-9666-5805
https://orcid.org/0000-0001-9666-5805
https://orcid.org/0000-0002-0330-8698
https://orcid.org/0000-0002-0330-8698
https://orcid.org/0000-0002-0330-8698
https://orcid.org/0000-0001-7467-5498
https://orcid.org/0000-0001-7467-5498
https://orcid.org/0000-0001-7467-5498
https://orcid.org/0000-0001-6310-0146
https://orcid.org/0000-0001-6310-0146
https://orcid.org/0000-0001-6310-0146
https://orcid.org/0000-0001-9982-2730
https://orcid.org/0000-0001-9982-2730
https://orcid.org/0000-0001-9982-2730
https://orcid.org/0000-0001-9975-5726
https://orcid.org/0000-0001-9975-5726
https://orcid.org/0000-0001-9975-5726
https://orcid.org/0000-0002-2153-8534
https://orcid.org/0000-0002-2153-8534
https://orcid.org/0000-0002-2153-8534
https://orcid.org/0000-0001-8215-975X
https://orcid.org/0000-0001-8215-975X
https://orcid.org/0000-0001-8215-975X
https://orcid.org/0000-0003-2480-1171
https://orcid.org/0000-0003-2480-1171
https://orcid.org/0000-0003-2480-1171
https://orcid.org/0000-0003-1821-8561
https://orcid.org/0000-0003-1821-8561
https://orcid.org/0000-0003-1821-8561
https://orcid.org/0000-0001-8664-8059
https://orcid.org/0000-0001-8664-8059
https://orcid.org/0000-0001-8664-8059
https://orcid.org/0000-0003-3480-3023
https://orcid.org/0000-0003-3480-3023
https://orcid.org/0000-0003-3480-3023
https://orcid.org/0000-0001-7656-4214
https://orcid.org/0000-0001-7656-4214
https://orcid.org/0000-0001-7656-4214
https://orcid.org/0000-0002-0052-8580
https://orcid.org/0000-0002-0052-8580
https://orcid.org/0000-0002-0052-8580
https://orcid.org/0000-0003-0720-1422
https://orcid.org/0000-0003-0720-1422
https://orcid.org/0000-0003-0720-1422
https://orcid.org/0000-0001-6042-9341
https://orcid.org/0000-0001-6042-9341
https://orcid.org/0000-0001-6042-9341
https://orcid.org/0000-0002-2840-7086
https://orcid.org/0000-0002-2840-7086
https://orcid.org/0000-0002-2840-7086
https://orcid.org/0000-0003-1777-5067
https://orcid.org/0000-0003-1777-5067
https://orcid.org/0000-0003-1777-5067
https://orcid.org/0000-0001-8496-3514
https://orcid.org/0000-0001-8496-3514
https://orcid.org/0000-0001-8496-3514
http://creativecommons.org/licenses/by/4.0/


Correspondence

Andrew M. Cunliffe, Department of

Geography, Amory Building, Rennes Drive,

University of Exeter, Exeter, EX4 4RJ, UK.

E-mail: a.cunliffe@exeter.ac.uk

Editor: Temuulen Sankey

Associate Editor: A Carter

Received: 15 January 2021; Revised: 1 June

2021; Accepted: 7 June 2021

doi: 10.1002/rse2.228

poorly represented in remotely sensed biomass products and are undersampled

by in situ monitoring. Current global change threats emphasize the need for

new tools to capture biomass change in non-forest ecosystems at appropriate

scales. Here we developed and deployed a new protocol for photogrammetric

height using unoccupied aerial vehicle (UAV) images to test its capability for

delivering standardized measurements of biomass across a globally distributed

field experiment. We assessed whether canopy height inferred from UAV pho-

togrammetry allows the prediction of aboveground biomass (AGB) across low-

stature plant species by conducting 38 photogrammetric surveys over 741 har-

vested plots to sample 50 species. We found mean canopy height was strongly

predictive of AGB across species, with a median adjusted R2 of 0.87 (ranging

from 0.46 to 0.99) and median prediction error from leave-one-out cross-

validation of 3.9%. Biomass per-unit-of-height was similar within but different

among, plant functional types. We found that photogrammetric reconstructions

of canopy height were sensitive to wind speed but not sun elevation during sur-

veys. We demonstrated that our photogrammetric approach produced general-

izable measurements across growth forms and environmental settings and

yielded accuracies as good as those obtained from in situ approaches. We

demonstrate that using a standardized approach for UAV photogrammetry can

deliver accurate AGB estimates across a wide range of dynamic and heteroge-

neous ecosystems. Many academic and land management institutions have the

technical capacity to deploy these approaches over extents of 1–10 ha�1. Pho-

togrammetric approaches could provide much-needed information required to

calibrate and validate the vegetation models and satellite-derived biomass prod-

ucts that are essential to understand vulnerable and understudied non-forested

ecosystems around the globe.

Introduction

Non-forest ecosystems, dominated by shrubs and herba-

ceous plants, cover about 70% of the Earth’s land surface

(Duncanson et al., 2019) and account for around 35% of

all aboveground biomass (AGB) (Liu et al., 2015). They

provide multiple ecosystem services, with critical roles in

grazing and agriculture (Asner et al., 2004) and dominate

the long-term trends and inter-annual variability of the

global carbon cycle (Ahlstr€om et al., 2015; Poulter et al.,

2014). Understanding the roles these ecosystems play in

climate change mitigation and sustainable food produc-

tion requires information on biomass dynamics (Bartsch

et al., 2020; Griscom et al., 2017; Harper et al., 2018).

However, monitoring biomass with in situ measurements

is labour intensive and thus prone to undersampling, par-

ticularly in ecosystems that are spatially heterogeneous

and/or temporally dynamic, gaining or losing biomass

rapidly (Bartsch et al., 2020; Duncanson et al., 2019;

Huenneke et al., 2001; Schimel et al., 2015; Shriver,

2016). Grassland, shrubland, Arctic tundra, savanna and

proglacial montane landscapes are often more sensitive to

climatic changes than forests (Myers-Smith et al., 2020)

but have received less systematic research attention (Dun-

canson et al., 2019; McNicol et al., 2018; Sleeter et al.,

2018). Gaps in available observations mean that biomass

dynamics are not being quantified in many key ecosys-

tems across the globe, hindering the calibration and vali-

dation of vegetation models and biomass products

derived from satellite observations (Bartsch et al., 2020;

Brandt et al., 2018; McNicol et al., 2018). The lack of

accurate biomass data limits our ability to track changes

and predict future responses in globally important non-

forest ecosystems.

Improving the accuracy of biomass data in non-forest

biomes requires approaches that are sensitive to small

absolute differences in AGB, sufficiently inexpensive to

be adopted worldwide, and conducive to spatially con-

tinuous sampling across representative areas at temporal

frequencies appropriate for dynamic ecosystems (Bartsch

et al., 2020; Sankey et al., 2021; Shriver, 2016). Non-

destructive estimates of AGB are conventionally obtained

from in situ measurements of attributes such as plant

cover, height and stem diameters, using functions fitted

to harvested biomass observations (Paul et al., 2016;

Rudgers et al., 2019). Canopy volume, the product of

height and cover, is often the strongest predictor of AGB

for low-stature plants like shrubs and herbs (Alonzo

et al., 2020; Bendig et al., 2014; Cunliffe et al., 2020a;

Gr€uner et al., 2019, 2020, 2021; Huenneke et al., 2001;
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Kr€ohnert et al., 2018; Schulze-Br€uninghoff et al., 2020;

Wijesingha et al., 2019). Remote sensing approaches

have been widely used to extend the coverage of biomass

predictions. Biomass estimated from spectral reflectance

is often highly uncertain due to asymptotic relationships

between AGB and surface reflectance and variable soil

albedo (Cunliffe et al., 2020a; Myers-Smith et al., 2020).

Biomass can be predicted from airborne light detection

and ranging (LiDAR) in shrublands and savannas

(Greaves, 2017) but the footprints sampled by LiDAR

can be insensitive to fine-scale changes in plant structure

and these data are prohibitively expensive in many areas.

Globally available biomass products from space-based

sensors such as LiDAR, synthetic-aperture radar or vege-

tation optical depth are either insensitive and/or poorly

calibrated and validated in low biomass (<20 Mg ha�1)

ecosystems (Bartsch et al., 2020; Brandt et al., 2018;

Dubayah et al., 2020; Duncanson et al., 2019; McNicol

et al., 2018; Sleeter et al., 2018).

Photogrammetry products derived from overlapping

aerial images acquired with unoccupied aerial vehicles

(UAVs, often referred to as ‘drones’ Joyce et al., 2021)

could greatly improve the quantification of AGB in non-

forest ecosystems. This is true for (a) direct cases at local

scales and (b) indirectly through enabling improvements

in the calibration and validation of biomass products

obtained from satellite observations over larger extents.

Advances in photogrammetry, particularly structure-

from-motion (SfM) with multi-view stereopsis (Westoby

et al., 2012), have made it possible to capture 3D repre-

sentations of plants, quantitatively describing fine-scale

structures (Cunliffe et al., 2016; Dandois & Ellis, 2013;

Wallace et al., 2017). SfM allows objective measurements

of canopy height at sub-decimetre spatial grain for a wide

range of plants (Bendig et al., 2014; Cunliffe et al., 2016;

Frey et al., 2018; Gr€uner et al., 2019; Kr€ohnert et al.,

2018; Lussem et al., 2019; Poley & McDermid, 2020; Wal-

lace et al., 2017). Lightweight and inexpensive UAV sur-

veys can capture detailed coverage of 1–10 ha extents that

are more representative than manual sampling in hetero-

geneous ecosystems (Cunliffe et al., 2016; Huenneke

et al., 2001) and enable spatially explicit comparisons with

other observations (Bartsch et al., 2020; Bouvet et al.,

2018; Cunliffe et al., 2020b; Duncanson et al., 2019) at

temporal intervals appropriate for highly dynamic ecosys-

tems (Bouvet et al., 2018; Cunliffe et al., 2019; Jeziorska,

2019; Shriver, 2016; Yang et al., 2020). Several studies

have indicated that UAV-based survey approaches have

the potential to address this observation gap; however,

differences in collection, processing and analysis of UAV

data between groups prevent cross-site synthesis and have

impeded progress in this field.

Fully realizing the potential of UAV photogrammetry

in plant science requires reproducible workflows that

minimize biases (Cunliffe & Anderson, 2019; Frey et al.,

2018; Tmu�si�c et al., 2020). Furthermore, effective applica-

tion of UAV photogrammetry to plant science requires

knowledge of the relationships between photogrammetry-

derived canopy height and AGB across a range of plants

and ecosystems, as well as the systematic understanding

of the possible influences of environmental conditions

(Cunliffe et al., 2016; Dandois et al., 2015; Frey et al.,

2018; Kr€ohnert et al., 2018; P€atzig et al., 2020). In partic-

ular, wind speed may influence retrieved canopy metrics

by causing movement of the foliage between image cap-

ture and sun angle may influence retrieved canopy met-

rics by altering the distribution of shadows on different

parts of canopies (Dandois et al., 2015; Frey et al., 2018),

yet their overall effects are poorly understood in opera-

tional contexts. Thousands of hectares of low stature

ecosystems have been surveyed with UAVs across the

globe over recent years, yielding information-rich datasets.

However, UAV-photogrammetry products are sensitive to

the ways in which data are (i) collected (e.g. ground sam-

pling distance, image overlap, viewing geometry, spatial

control, illumination conditions) (Cunliffe et al., 2016;

Dandois et al., 2015; Frey et al., 2018; James et al., 2020;

James & Robson, 2014; Mosbrucker et al., 2017; Tmu�si�c

et al., 2020), (ii) processed (e.g. software, lens model,

control accuracy, processing quality, depth filtering)

(Cunliffe et al., 2016; James et al., 2020; James & Robson,

2014; Mosbrucker et al., 2017) and (iii) analysed (e.g.

canopy height metrics, spatial grain and interpolation

method, statistical treatment) (Cunliffe et al., 2016,

2020b; Gr€uner et al., 2019; Lussem et al., 2019; Poley &

McDermid, 2020; Wallace et al., 2017). These sensitivities

are more pronounced for subjects with complex texture,

such as vegetation, and hinder comparisons between mea-

surements obtained from different workflows. Maximizing

the value of photogrammetric approaches for ecological

insight, therefore, needs standardized and reproducible

protocols (Cunliffe et al., 2020b; P€atzig et al., 2020) but

few efforts currently exist to advance this aim.

In this study, we tested the capacity of a new UAV data

collection and analysis protocol to deliver standardized

measurements for allometric inference of biomass in non-

forested ecosystems globally. We asked the following

research questions: (1) Does canopy height derived from

UAV photogrammetry correspond with AGB at the spe-

cies level? (2) Does photogrammetry-derived canopy

height correspond with AGB at the plant functional type

(PFT) level? (3) Are the relationships between recon-

structed canopy height and biomass influenced by wind

speed and (4) solar elevation?
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Materials and Methods

Sampling design

We invited over 400 researchers from remote sensing,

UAV photogrammetry and vegetation science communi-

ties around the world to participate in this experiment

and collect new data using the same rigorous field pro-

tocol (Cunliffe & Anderson, 2019). Our field protocol

was informed by a large body of previous work (Ass-

mann et al., 2018; Cunliffe et al., 2016, 2020a, 2020b;

Dandois & Ellis, 2013; Duffy et al., 2017; Frey et al.,

2018, etc.) and was designed to deliver comparable data-

sets across different users using different tools and work-

ing in different ecosystems. We focused on sampling low

stature phenotypes across a diverse range of non-forest

ecosystems, including Arctic tundra, woody savanna,

proglacial montane and semi-arid and temperate grass-

land and shrubland sites (Fig. 1B). We asked partici-

pants to select target species that were regionally

widespread, accessible and would inform ongoing

research efforts. Sampling was undertaken during sea-

sonal peak canopy cover to try to minimize differences

due to phenophase.

Aerial imaging surveys

We used lightweight UAVs to capture aerial visible (red-

green-blue) photographs of each harvest site (see Table S1

for details on each site and camera). For each site, two

sets of survey flights were undertaken, the first acquiring

nadir images with a spatial grain of ca. 5 mm per pixel at

the canopy top, and the second acquiring oblique (ca. 20°
from nadir) images from ca. 4-m higher altitude. Survey

Figure 1. Point clouds derived from UAV surveys provided structural reconstructions of plants across globally distributed non-forested

ecosystems. Our sampling across four continents (A) encompassed five bioclimatic zones where low stature vegetation is often dominant,

representing most of the non-forest biomes described by Whitaker (1975) (B). Reconstructed point clouds with grid of black points representing

the modelled terrain correspond strongly with photographs of harvest plots (C).
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altitudes, therefore, varied depending on the spatial reso-

lution and field-of-view of the sensors and the canopy

height but were typically ca. 20 m above the canopy. The

different perspectives afforded by the nadir and higher,

convergent surveys improved the camera network stability

(Aber et al., 2019; Hendrickx et al., 2019; James & Rob-

son, 2014; James et al., 2017; Luhmann et al., 2016; Mos-

brucker et al., 2017; Nesbit & Hugenholtz, 2019). Each

survey obtained 75% forward and side overlap, together

capturing at least 30 images for each part of the study

area. High image overlap facilitated tie point matching in

vegetated scenes. Wind speeds were generally recorded

using handheld anemometers ca. 2 m above ground level

immediately prior to the survey (Duffy et al., 2017). Our

sampling protocol (Cunliffe & Anderson, 2019) was opti-

mized for smaller plants of up to ca. 3 m in height (see

Note S1 for further discussion). A key requirement for

photogrammetric surveys is the inclusion of adequate spa-

tial control (Aber et al., 2019; James et al., 2020). We

used thirteen ground markers, deployed across each site

and geolocated to a typical precision of �0.015 m hori-

zontally and �0.03 m vertically to constrain our recon-

structions.

Vegetation harvests

We sampled a total of 741 harvest plots with AGB rang-

ing from 9 to 7892 g m�2, mean canopy heights ranging

from 0 to 1.9 m and maximum canopy heights ranging

from 0.01 to 6.7 m. We used an area-based approach to

enable sampling in ecosystems with continuous or coa-

lesced canopies, while also sampling individual plants

where these were naturally isolated from other plants

(Cunliffe & Anderson, 2019; Cunliffe et al., 2020b). We

selected harvest plots to sample across the natural range

of canopy heights observed at each site in order to effi-

ciently estimate the allometric models and assess the form

of the relationship between mean canopy height and bio-

mass (Warton et al., 2006). Plots were chosen to try to

ensure that ≥90% of the biomass and ≥90% of the foliar

volume within each plot was associated with the target

species. The protocol detailed that sampling plots should

be a minimum size of 0.5 9 0.5 m to minimize the

effects of co-registration errors. The corners of each plot

were geolocated with a high-precision global navigation

satellite system (GNSS) before all standing biomass was

harvested to ground level (or the moss level for Salix

richardsonii and Arctophila fulva) (Cunliffe et al., 2020a).

Biomass was then dried at ca. 50–80°C until reaching a

constant weight over a 24-h period. For the largest taxa

(Adenostoma fasciculatum, Adenostoma sparsifolium, Atri-

plex polycarpa, Ericameria nauseosa, Juniperus mono-

sperma, Launaea arborescens, Pinus edulis and Prosopis

velutina), freshly harvested biomass was immediately

weighed in the field and representative sub-samples were

dried to determine moisture contents (Cunliffe et al.,

2020b).

Image-based modelling

Aerial images were processed using SfM photogrammetry,

using well-established workflows that have been shown to

deliver accurate results in low stature ecosystems (Cunliffe

et al., 2020a, 2020b; Cunliffe et al., 2016). Geotagged

image data and ground-control marker coordinates were

imported into AgiSoft PhotoScan Professional v1.4.3

(now Metashape, http://www.agisoft.com) and converted

to UTM coordinate reference systems. Image sharpness

was measured using PhotoScan’s image quality tool, all

images had image sharpness scores ≥0.5 (Mosbrucker

et al., 2017). Interior (lens distortion) and exterior (posi-

tion and orientation) camera parameters were estimated

using PhotoScan’s highest quality setting, a key point

limit of 40 000, a tie point limit of 8000, with generic

and reference pair preselection enabled, and adaptive

camera model fitting disabled. During camera self-

calibration, we estimated focal length (f), principal point

(cx, cy), radial distortion (k1, k2), tangential distortion

(p1, p2), aspect ratio and skew coefficient (b1, b2) lens

parameters. Most cameras had global shutters but rolling

shutter corrections were used when appropriate. Refer-

ence parameters were set to the following: camera loca-

tion accuracy = XY � 20 m, Z � 50 m; marker location

accuracy = XY � 0.02 m, Z � 0.05 m; marker projection

accuracy was set to 2 pixels; tie point accuracy was set to

either the mean root mean square reprojection error or

one, whichever was greater. Camera alignment produced

a sparse point cloud that was then filtered to exclude

points with reprojection error >0.45 pixels. The sparse

point clouds and estimated camera positions were

reviewed for plausibility, and any obviously erroneous tie

points or cameras were removed manually. Digital mark-

ers were placed by an operator on 10 projected images

for each of the 13 ground markers. Ten of these markers

were used to constrain the photogrammetric reconstruc-

tions spatially (Ribeiro-Gomes et al., 2016), while the

remaining three used for accuracy assessment were dese-

lected before the camera parameters were optimized. Any

obviously implausible camera positions were refined after

marker placement and optimization. All cameras were

aligned in most cases and used for multi-view stereopsis

(dense point cloud generation), using the ultrahigh-

quality setting with mild depth filtering to preserve finer

details of the vegetation (Cunliffe et al., 2016, 2020a; Frey

et al., 2018; Lussem et al., 2019). For further discussion,

see Note S1.
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Terrain modelling

An essential requirement for deriving canopy height models

from photogrammetry-derived point clouds is a digital ter-

rain model, which must be sufficiently accurate and

detailed with respect to canopy heights and topographic

complexity (Poley & McDermid, 2020). We used terrain

models interpolated with Delaunay triangulation between

the GNSS-observed harvest plot corners (Fig. 1C). In

instances where plant canopies are discontinuous in space,

suitable terrain models could be extracted from the pho-

togrammetric point cloud (Cunliffe et al., 2016; Gr€uner

et al., 2019). Other options include extracting terrain mod-

els from photogrammetric UAV surveys during leaf-off

conditions, LiDAR surveys (Wilke et al., 2019) or walkover

surveys with GNSS instruments (Cunliffe et al., 2020b).

Calculation of canopy heights

Point clouds were analysed with PDAL (v2.1.0) (PDAL

Contributors, 2020). The point cloud representing each

harvest plot was a subset using the GNSS-observed corner

coordinates. In a few instances where plot infrastructure

(e.g. marker flags) was visible in the point cloud (n = 20

plots), these points were manually classified as noise and

excluded from canopy height calculations. Within each

plot, the height-above-ground of each point was calcu-

lated relative to the terrain model and any points with

negative heights-above-ground were set to zero (Cunliffe

et al., 2016; Gr€uner et al., 2019). Using a 0.01 m resolu-

tion grid, we calculated the maximum point height in

each grid cell. For cells containing no points, we interpo-

lated heights using inverse distance weighting considering

an array of 7 9 7 cells with a power of one, and cells

with no points in that neighbourhood remained empty.

Plot-level mean canopy height was then extracted from

this grid of local maxima elevations. Mean canopy height,

sampled at fine (centimetre) spatial grain, integrates

canopy cover and height, as well as foliage density; the

consideration of these multiple plant size attributes was

fundamental to the robust prediction of biomass using

this approach.

Statistical analysis

Sun elevations were computed with the Astral package

(Kennedy, 2020). Statistical analyses were conducted in R

(v3.6.1, R Core Team, 2019). Figure 1B was produced

using the plotbiomes package (Stefan, 2018). We excluded

13 bryophyte plots from two rocky sites where we were

unable to extract meaningful canopy height observations

(Fig. S5) and 16 graminoid plots from one grassland site

(‘WSP’) that could not be reconstructed (Fig. S6, Note

S1).

We used ordinary least squares regression to fit linear

models predicting AGB observations from mean canopy

height for each plant functional type (PFT) and for each

species with four or more observations. We considered

ferns, forbs, graminoids, shrubs, trees and succulents as

PFTs and constrained the y-intercept to zero in order to

ensure zero canopy height predicted zero biomass. Model

performance was validated using leave-one-out cross-

validation (LOOCV) to compute the mean out-of-sample

prediction error, which was divided by the model slope

to obtain relative errors for each model (Alfons, 2015;

Poley & McDermid, 2020).

To test whether near-ground wind speed influences

allometric functions, we fitted a generalized linear mixed

model (GLMM) to predict total biomass as a function of

canopy height and wind speed as fixed effects and PFT as

a random effect based on a gamma error distribution

with an identity link function, using the ‘lme4’ package

(v1.1–23) (Bates et al., 2015) (Table S3). Succulents were

excluded because their inclusion prevented model conver-

gence, possibly because this PFT had a much steeper slope

between height: biomass (Table 1, Fig. 2) and/or because

they may be less influenced by wind speed (Fig. S2). To

illustrate the effect of wind speed, we used the ‘ggeffects’

package (v0.15) (L€udecke & Aust, 2020) to simulate the

relationship between height and biomass for three levels

of wind speed using the GLMM (Fig. 3A), and plotted

the slope of biomass–height models (�83% confidence

interval (Krzywinski & Altman, 2013)) against wind speed

at the PFT (Fig. S2A) and species levels (Fig. S3). There

was insufficient replication to allow convergence of more

Table 1. Parameters for linear models fitted to each plant functional type. LOOCV is the prediction error from Leave-One-Out Cross-Validation

divided by the slope.

Plant functional type n n of surveys Slope g m�2 Residual standard error g m�2 Adj. R2 t-statistic P value LOOCV %

Fern 6 1 1096 53 0.99 20.558 <0.0001 12.0

Forb 22 3 1191 262 0.47 4.534 0.0002 19.0

Graminoid 227 17 2898 112 0.75 25.786 <0.0001 3.7

Shrub 397 24 3214 134 0.59 23.823 <0.0001 11.6

Tree 38 2 5572 577 0.71 9.654 <0.0001 16.7

Succulent 22 3 11 532 760 0.91 15.159 <0.0001 2.6
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complex model structures including species nested within

PFT or site as random effects. We evaluated diagnostics

for all models visually using the R package ‘performance’

(v0.4.6) (L€udecke et al., 2020).

To test whether cloud cover influenced allometric func-

tions, we fitted a linear mixed model (LMM) to predict

total biomass as a function of canopy height, with PFT as

a random effect and cloud cover as fixed effects, using the

‘lmerTest’ package (v3.1–2) (Kuznetsova et al., 2020)

(Table S4). Cloud cover was coded as a binary factor,

with relatively clear sky (n = 620) and cloudy conditions

where the sun was obscured (n = 80, sky codes ≥6 after

Assmann et al., 2018, Table S6). To illustrate the effect of

cloud cover, we simulated the modelled relationship

between height and biomass for the two levels of cloud

cover using the LMM (Fig. S4).

To test whether sun elevation influences allometric

functions, we fitted a LMM to predict total biomass as a

function of canopy height and sun elevation as fixed

effects and PFT as a random effect, using the ‘lmerTest’

package (v3.1–2) (Kuznetsova et al., 2020) (Table S5). We

only included observations collected under relatively clear

sky conditions (n = 620, sky codes ≤5). To illustrate the

effect of sun elevation, we simulated the modelled rela-

tionship between height and biomass for three levels of

sun elevation using the LMM (Fig. 3B), and plotted the

slope of biomass–height models (�83% confidence inter-

val, after Krzywinski & Altman, 2013) against sun eleva-

tion at the PFT (Fig. S3B) and species level (Fig. S5).

Results

Coordinated sampling across a new global
network

In response to our request for collaboration, researchers

across 28 institutions collected and shared data using con-

sistent data collection protocols (Cunliffe & Anderson,

2019). We sampled 36 sites with a global distribution

spanning from 71° North to 37° South, across North

Figure 2. Photogrammetrically derived canopy height was a strong predictor of biomass within most plant functional types. A constant X:Y ratio

was used for all plots, enabling visual comparisons of model slopes even though axis ranges vary. Model slopes were generally similar within but

differed between, plant functional types. ‘Species’ indicates the number of species pooled for each plant functional type and black lines are linear

models with intercepts constrained through the origin. Full model results are included in Table 1.
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America, Europe, Australia and Africa (Fig. 1) and from

sea level up to 2800 m AMSL. Two sites were sampled in

consecutive years, giving 38 surveys from 36 sites

(Table S1). Across our new global network, we sampled

50 low stature plant species across six PFTs including

ferns, forbs, graminoids, shrubs, succulents and trees that

covered phylogenetic diversity including non-flowering

plants and the most species-rich clades of flowering plants

(including monocots and eudicots), representing the first

such coordinated photogrammetric ecological experiment

of its kind. While our field measurements did not consti-

tute a random or systematic sample, they did encompass

a broad range of plant communities.

Height–biomass relationship at the species
level

Photogrammetrically measured mean canopy height was

strongly predictive of AGB at the species level. Linear

models with a zero intercept provided good approxima-

tions of the relationships between mean canopy height

and AGB and are readily interpreted (Fig. 2 and Fig. S1)

(Cunliffe et al., 2020a; Poley & McDermid, 2020). The

slopes from these models are equivalent to AGB density

(g m�3, calculated by dividing g m�2 by mean canopy

height). Species-level densities ranged between 375 and

13 801 g m�3 (Fig. S1, Table S2). Mean canopy height

was an accurate predictor for individual species, especially

when calibrated for specific ecophenotypic and phenologi-

cal conditions (Huenneke et al., 2001; Poley & McDer-

mid, 2020; Rudgers et al., 2019). Model goodness-of-fit

was strong, with adjusted R2 values ranging from 0.46 to

0.99 and a median of 0.87 (Fig. S1, Table S2). Leave-one-

out cross-validation indicated a median prediction error

of 3.9% (Table S2). The carefully designed standardized

protocol (Cunliffe & Anderson, 2019) for data acquisition

and processing yielded a good level of success in recon-

structing 93% (688 out of 741) of harvest plots (Fig. 1C).

The few instances where reconstructions were unsuccess-

ful (including mosses in rocky terrain, tall and dense

grassland, and plants mostly taller than >3 m) are dis-

cussed further in Note S1. The similarities of the height–
biomass relationships (Table 1 and Table S2) indicate this

approach was generalizable across growth forms and envi-

ronmental settings.

Height–biomass relationship at the PFT level

Relationships between height and biomass were similar

within plant functional types. For every 1-cm increase in

mean canopy height, AGB increased by 11–115 g m�2,

depending on PFT (Fig. 2, Table 1). Adjusted R2 ranged

from 0.49 to 0.99 (Fig. 2, Table 1). Ferns had the lowest

density (1096 g m�3), followed by forbs (1191 g m�3),

Figure 3. Reconstructed plant height and thus height–biomass relationships were systematically influenced by near-ground wind speed but were

insensitive to sun elevation. Mean predicted aboveground biomass variation over the range of observed mean canopy height, estimated for a

range of three wind speeds and sun elevations. Wind speed had a statistically clear and positive effect on the relationship between height and

biomass (A) (Figs. S2A and S3, Table S3) but sun elevation had no significant effect on the relationship between height and biomass (B) (Figs. S2B

and S5, Table S5). Shaded areas represent 95% confidence intervals on the model predictions.
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then graminoids (2898 g m�3) and shrubs (3214 g m�3)

with similar densities, then small trees (5572 g m�3) and

lastly succulents with the greatest density (11 532 g m�3).

Species-level model slopes were generally similar within

but different between, PFTs. Should resource limitations

or taxon conservation status preclude destructive harvests

for local calibrations, the height–mass models described

here could be used to estimate AGB from similar UAV-

derived canopy height models (Table 1 and Table S2).

These allometric relationships were linear across the range

of canopy height and biomass that we sampled, allowing

their application from the whole plant level to the ecosys-

tem level without necessarily requiring the discrete analy-

sis of individual plants that can be challenging in

ecosystems with coalesced canopies.

Influence of wind speed and illumination
conditions on reconstructed canopy height

Wind speed negatively affects canopy heights recon-

structed from photogrammetry (Fig. 3A, Figs. S2 and S3,

Table S3). We found the height-wind interaction parame-

ter was strong and highly significant (P < 0.0001)

(Fig. 3A, Table S3). This influence was seen at both the

PFT level (Fig. S2A) and species level (Fig. S3). Biomass

divided by height increased for surveys conducted in

windier conditions because foliage movement meant

lower mean canopy heights were reconstructed from

images that were acquired non-concurrently (see Data S2

for an extended discussion). However, the wind had only

limited influence on our study because most of our sur-

veys were conducted in relatively light wind conditions

(of <3 m s�1) (Table S1). We expect sensitivity to wind

speed differs between species because the effects of wind

on foliage motion depend on canopy architecture and

mechanical properties like limb stiffness (Fig. S3, Note

S2). Sun elevation had no detectable effect on recon-

structed plant height (Fig. 3B, Figs. S2B and S5,

Table S5). Cloudy conditions appeared to affect allomet-

ric density; however, we considered this finding unreliable

due to the imbalance in observations under cloudy and

clear conditions (n = 80 vs. n = 620, respectively,

Table S4, Fig. S4). Our study demonstrates the need to

control the influence of wind speed in future work partic-

ularly when conducting fine-scale surveys of low stature

plants. Surveying under low wind speeds may be a higher

priority than optimal (near-nadir) solar elevations for

obtaining reproducible structural models of vegetation.

Discussion

Using a newly developed photogrammetric data collection

protocol, we were able to measure structural plant traits

across a globally distributed set of low stature ecosystems.

Comparable data collection by participants from 28 insti-

tutes across 50 non-forest plant species enabled us to

establish and compare height–biomass relationships. Our

sample achieved a more than 20-fold improvement in the

coverage of harvest plots, species and sites compared to

existing photogrammetry vegetation studies (Fig. 1C)

(Gr€uner et al., 2019; Lussem et al., 2019; Wallace et al.,

2017). The relationships between canopy height and bio-

mass appeared linear at the species and PFT levels across

a diverse range of low stature ecosystems (Fig. 2 and

Fig. S1). Linear allometric functions can be applied from

the whole plant level to the ecosystem level without nec-

essarily requiring the discrete analysis of individual plants

that can be challenging in ecosystems with coalesced

canopies (Bartsch et al., 2020; Cunliffe et al., 2016; Krof-

check et al., 2016; Poley & McDermid, 2020).

The high goodness-of-fits and low average prediction

errors (Table 1 and Table S2) indicate accuracy was as

good as conventional in situ allometric approaches

reported in the literature (Chieppa et al., 2020; Cunliffe

et al., 2020b; Huenneke et al., 2001; Muldavin et al.,

2008; Rudgers et al., 2019). Species-level model slopes

were generally similar within but different among, PFTs,

indicating these relationships appear generally trans-

ferrable between species within PFTs (Chieppa et al.,

2020; Paul et al., 2016), particularly for the better-

sampled types such as graminoids and shrubs, although

phenotypic and phenological variation will always limit

accuracy (Paul et al., 2016; Poley & McDermid, 2020;

Rudgers et al., 2019). While UAV photogrammetry cer-

tainly can be used to characterize forest canopies (Dan-

dois et al., 2015; Frey et al., 2018; Poley & McDermid,

2020), tree-dominated forest ecosystems are often better

candidates for measurement with other remote sensing

approaches such as LiDAR (Dubayah et al., 2020; Dun-

canson et al., 2019; Herold et al., 2019), synthetic-

aperture radar (McNicol et al., 2018) or vegetation optical

depth (Brandt et al., 2018; Rodr�ıguez-Fern�andez et al.,

2018; Tian et al., 2016). The similarity of graminoid and

shrub PFT relationships indicates these could be applied

together to estimate AGB in some mixed ecosystems,

without the need to individually classify these types,

although allometric functions may need to be calibrated

locally in some cases (see Note S4 for further discussion).

The LOOCV prediction errors were sensitive to the num-

ber of subsamples (e.g. surveys and/or species) sampled

for each taxon and they should therefore be compared

carefully between taxonomic groups.

Our findings show that our designed protocol enables

observations that provide new insights into ecosystem

dynamics at previously understudied scales across non-

forested ecosystems. Other groups following this now
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proven workflow will be able to further extend this

understanding to a greater range of ecosystems species

and environmental conditions in the future. Mean canopy

height is readily compared between taxa, ecosystems and

observation approaches (Bartsch et al., 2020; Cunliffe

et al., 2020a), so these linear relationships are straightfor-

ward to interpret (Warton et al., 2006) and can be easily

integrated with landscape modelling frameworks. UAV

photogrammetry is well suited for local-scale observation

in non-forest ecosystems. Intensive UAV surveys are rela-

tively easy to conduct over larger spatial extents of several

hectares, which are critical to advancing beyond existing

in situ approaches and bridging the scale gap between

on-the-ground monitoring and the coarser grain of

global-scale products derived from satellite-based remote

sensing (Cunliffe et al., 2016; Poley & McDermid, 2020).

Accurate information at these intermediary scales is

invaluable for validating models and testing the scaling of

ecological relationships and biomass carbon estimates

from plots to biomes (Alonzo et al., 2020; Bartsch et al.,

2020; Cunliffe et al., 2020a; Myers-Smith et al., 2020).

Addressing critical knowledge gaps in plant science

with UAV photogrammetry demands standardized proto-

cols because photogrammetry-derived models are sensitive

to the ways in which data are collected (Cunliffe et al.,

2016; Dandois et al., 2015; Frey et al., 2018; James et al.,

2020; James & Robson, 2014; Mosbrucker et al., 2017),

processed (Cunliffe et al., 2016; James et al., 2020; James

& Robson, 2014; Mosbrucker et al., 2017) and analysed

(Cunliffe et al., 2016, 2020b; Gr€uner et al., 2019; Lussem

et al., 2019; Wallace et al., 2017). These sensitivities hin-

der comparisons between products obtained from differ-

ent workflows and can be more pronounced for subjects

with complex texture, such as vegetation. We anticipate

ongoing improvements to camera geolocation and orien-

tation information will continue to improve the accuracy

and reliability of the camera parameter estimation, partic-

ularly in densely vegetated and texturally complex settings

(see also Data S1) (Aber et al., 2019; Chudley et al., 2019;

James et al., 2020; Tmu�si�c et al., 2020; Zhang et al.,

2019). The lack of systematic and reproducible protocols

has impeded the use of UAV data in ecological research

to date, so we call for the continued development of har-

monized and community-based protocols to maximize

knowledge gains and support cross-biome syntheses

(Cunliffe & Anderson, 2019; P�erez-Harguindeguy et al.,

2013; Poley & McDermid, 2020; Tmu�si�c et al., 2020).

Using a standardized protocol allowed us to investigate

how wind speed (Fig. 3A) and solar elevation (Fig. 3B)

(Dandois et al., 2015) influenced our findings. We found

that it was important to account for the effects of wind

speed during photogrammetric surveys beyond simply

considering how wind affects aircraft performance. A few

previous studies reported contradictory effects of wind

speed on forest canopy reconstructions (Dandois et al.,

2015; Frey et al., 2018) but we think that these findings

may be affected by different spatial grains of analysis

(Note S2). Previous studies have also reported contradic-

tory effects of sun elevation on forest canopy reconstruc-

tions (Dandois et al., 2015; Frey et al., 2018); however,

illumination conditions affect photogrammetry in com-

plex ways (Aber et al., 2019; Mosbrucker et al., 2017),

with the influence of sun elevation depending on the dis-

tribution and intensity of shadows as well as the camera

sensor properties and user choices during surveys and

processing (see Note S3 for an extended discussion).

When comparing findings regarding illumination effects,

it is therefore necessary to consider the capabilities of the

sensors and workflows employed relative to the observed

subject. The most reproducible reconstructions will be

obtained under ‘zero’ wind speeds (Dandois et al., 2015;

Frey et al., 2018; Mosbrucker et al., 2017) and similar

illumination conditions although this is often difficult to

achieve under real-world operational conditions (Aber

et al., 2019; Duffy et al., 2017; Poley & McDermid, 2020).

Our findings demonstrate that data will be most compa-

rable when near-ground wind speeds are similar but also

that, where differences are unavoidable, it will be possible

to derive corrections for how wind influences canopy

reconstructions.

Conclusion

Our findings show UAV photogrammetry can yield infor-

mative canopy height models capable of detecting ecologi-

cally significant differences in AGB across a diverse range

of low stature ecosystems globally. UAVs have consider-

able advantages as data collection platforms for ecological

applications, including their relatively low cost (although

see Note S5), versatility in deployment allowing high tem-

poral resolution monitoring and capacity to record fine-

grained and spatially explicit data (Aber et al., 2019;

Anderson & Gaston, 2013; Tmu�si�c et al., 2020). System-

atic and comparable observations of plant canopy struc-

ture and biomass are vital for calibrating and evaluating

vegetation models and biomass products retrieved from

globally available remote sensing systems (Bouvet et al.,

2018; Duncanson et al., 2019; Rodr�ıguez-Fern�andez et al.,

2018; Tian et al., 2016). UAV data collection can broaden

the scope of research and monitoring programmes to

obtain more representative observations in vulnerable and

understudied low stature ecosystems. Photogrammetric

approaches for monitoring canopy height and biomass

provide novel tools that should be used more widely by

the ecological research community to improve assess-

ments of ecosystem change and global carbon budgets.
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Figure S1. Photogrammetrically derived canopy height is

a strong predictor of biomass across species.

Figure S2. Reconstructed plant height and thus height-

biomass relationships were influenced by wind speed but

were insensitive to sun elevation.

Figure S3. The sensitivity of photogrammetrically recon-

structed height to wind speed differs between species

based on growth form.

Figure S4. The apparently strong effect of cloud cover on

photogrammetrically reconstructed height likely arises

from imbalanced observations.

Figure S5. Sun elevation has little systematic effect on

photogrammetrically reconstructed height at the species-

level.

Figure S6. This sampling approach was unable to usefully

resolve the canopy height of mosses.

Figure S7. Image alignment was not possible in this tall

grassland, due to the complicated texture and structure of

the subject preventing the accurate matching of tie

points.

Table S1. Details of survey location, climate, ecosystem

type and image sensor.

Table S2. Parameters for species-level linear models, fitted

for all species with four or more observations.

Table S3. Generalised linear mixed model parameters

testing wind effects.

Table S4. Linear mixed model parameters testing cloud

cover effects.

Table S5. Linear mixed model parameters testing sun

effects.

Table S6. Sky Codes for qualitative classification of

cloud-related ambient light conditions.

Note S1. Notes on the limitations of photogrammetric

reconstructions of plants.

Note S2. Notes on how wind speed influences canopy
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Note S3. Notes on how sun elevation influences canopy

heights.

Note S4. Limitations on ‘universal’ allometries.

Note S5. Notes on costs.
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